Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density

As a new-era of energy harvesting technology, the enhancement of triboelectric charge density of triboelectric nanogenerator (TENG) is always crucial for its large-scale application on Internet of Things (IoTs) and artificial intelligence (AI). Here, a microstructure-designed direct-current TENG (MD...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 6186 - 9
Main Authors Zhao, Zhihao, Dai, Yejing, Liu, Di, Zhou, Linglin, Li, Shaoxin, Wang, Zhong Lin, Wang, Jie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.12.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As a new-era of energy harvesting technology, the enhancement of triboelectric charge density of triboelectric nanogenerator (TENG) is always crucial for its large-scale application on Internet of Things (IoTs) and artificial intelligence (AI). Here, a microstructure-designed direct-current TENG (MDC-TENG) with rationally patterned electrode structure is presented to enhance its effective surface charge density by increasing the efficiency of contact electrification. Thus, the MDC-TENG achieves a record high charge density of ~5.4 mC m −2 , which is over 2-fold the state-of-art of AC-TENGs and over 10-fold compared to previous DC-TENGs. The MDC-TENG realizes both the miniaturized device and high output performance. Meanwhile, its effective charge density can be further improved as the device size increases. Our work not only provides a miniaturization strategy of TENG for the application in IoTs and AI as energy supply or self-powered sensor, but also presents a paradigm shift for large-scale energy harvesting by TENGs. Low charge density is the bottleneck for the applications of triboelectric nanogenerator (TENG). Here, the authors demonstrate a microstructure-designed direct-current TENG with rationally patterned electrode structure to enhance its effective charge density to a new milestone.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-20045-y