Nitrative Stress in Cerebral Endothelium is Mediated by mGluR5 in Hyperhomocysteinemia
Hyperhomocysteinemia (HHcy) disrupts nitric oxide (NO) signaling and increases nitrative stress in cerebral microvascular endothelial cells (CMVECs). This is mediated, in part, by protein nitrotyrosinylation (3-nitrotyrosine; 3-NT) though the mechanisms by which extracellular homocysteine (Hcy) gene...
Saved in:
Published in | Journal of cerebral blood flow and metabolism Vol. 32; no. 5; pp. 825 - 834 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.05.2012
Nature Publishing Group Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hyperhomocysteinemia (HHcy) disrupts nitric oxide (NO) signaling and increases nitrative stress in cerebral microvascular endothelial cells (CMVECs). This is mediated, in part, by protein nitrotyrosinylation (3-nitrotyrosine; 3-NT) though the mechanisms by which extracellular homocysteine (Hcy) generates intracellular 3-NT are unknown. Using a murine model of mild HHcy (cbs+/– mouse), we show that 3-NT is significantly elevated in cerebral microvessels with concomitant reductions in serum NO bioavailability as compared with wild-type littermate controls (cbs+/+). Directed pharmacology identified a receptor-dependent mechanism for 3-NT formation in CMVECs. Homocysteine increased expression of inducible NO synthase (iNOS) and formation of 3-NT, both of which were blocked by inhibition of metabotropic glutamate receptor-5 (mGluR5) with the specific antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride. Activation of mGluR5 is both sufficient and necessary to drive the nitrative stress because direct activation using the mGluR5-specific agonist (RS)-2-chloro-5-hydroxyphenylglycine also increased iNOS expression and 3-NT formation while knockdown of mGluR5 receptor expression by short hairpin RNA (shRNA) blocked their increase in response to Hcy. Nitric oxide derived from iNOS was required for Hcy-mediated formation of 3-NT because the effect was blocked by 1400 W. These results provide the first evidence for a receptor-dependent process that explains how plasma Hcy levels control intracellular nitrative stress in cerebral microvascular endothelium. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 These authors contributed equally to this work. |
ISSN: | 0271-678X 1559-7016 |
DOI: | 10.1038/jcbfm.2011.185 |