Superhydrophobic magnetic sorbent via surface modification of banded iron formation for oily water treatment

In the current study, a simple dry coating method was utilized to fabricate a super-hydrophobic super-magnetic powder (ZS@BIF) for oily water purification using zinc stearate (ZS) and banded iron formation (BIF). The produced composite was fully characterized as a magnetic sorbent for oily water tre...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; p. 11016
Main Authors Farahat, Mohsen, Sobhy, Ahmed, Sanad, Moustafa M. S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.06.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the current study, a simple dry coating method was utilized to fabricate a super-hydrophobic super-magnetic powder (ZS@BIF) for oily water purification using zinc stearate (ZS) and banded iron formation (BIF). The produced composite was fully characterized as a magnetic sorbent for oily water treatment. The results of X-ray diffraction diffractometer (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and particle size analysis revealed the fabrication of homogenous hydrophobic-magnetic composite particles with core–shell structure. Contact angle and magnetic susceptibility results showed that 4 (BIF): 1 (Zs) was the ideal coverage ratio to render the core material superhydrophobic and preserve its ferromagnetic nature. The capability of the fabricated composite to sorb. n -butyl acetate, kerosene, and cyclohexane from oil–water system was evaluated. ZS@BIF composite showed a higher affinity to adsorb cyclohexane than n-butyl acetate and kerosene with a maximum adsorption capacity of about 22 g g −1 and 99.9% removal efficiency. Moreover, about 95% of the adsorbed oils could be successfully recovered (desorbed) by rotary evaporator and the regenerated ZS@BIF composite showed high recyclability over ten repeated cycles.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-15187-6