M2-like tumor-associated macrophages transmit exosomal miR-27b-3p and maintain glioblastoma stem-like cell properties

There is growing evidence supporting the implications of exosomes-shuttled microRNAs (miRs) in the phenotypes of glioblastoma stem cells (GSCs), whilst the role of exosomal miR-27b-3p remains to be established. Herein, the aim of this study was to investigate the effect of M2 tumor-associated macrop...

Full description

Saved in:
Bibliographic Details
Published inCell death discovery Vol. 8; no. 1; pp. 350 - 10
Main Authors Zhao, Guifang, Ding, Lijuan, Yu, Hongquan, Wang, Weiyao, Wang, Huan, Hu, Yao, Qin, Lingsha, Deng, Guangce, Xie, Buqing, Li, Guofeng, Qi, Ling
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.08.2022
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:There is growing evidence supporting the implications of exosomes-shuttled microRNAs (miRs) in the phenotypes of glioblastoma stem cells (GSCs), whilst the role of exosomal miR-27b-3p remains to be established. Herein, the aim of this study was to investigate the effect of M2 tumor-associated macrophage (TAM)-derived exosomal miR-27b-3p on the function of GSCs. Clinical glioblastoma (GBM) specimens were obtained and GSCs and M2-TAMs were isolated by fluorescence-activated cell sorting (FACS), and exosomes were separated from M2-TAMs. It was observed that M2-TAM-derived exosomes promoted the stem-like properties of GSCs. Gain- and loss- of function assays were then conducted to explore the effects of exosomal miR-27b-3p and the miR-27b-3p/MLL4/PRDM1 axis on GSC phenotypes. A xenograft tumor model of GBM was further established for in vivo substantiation. Inhibition of miR-27b-3p in M2-TAMs reduced exosomal miR-27b-3p transferred into GSCs and consequently diminished GSC viability in vitro and tumor-promoting effects of GSCs in vivo. The interaction among miR-27b-3p, mixed linked leukemia 4 (MLL4), positive regulatory domain I (PRDM1) was validated by dual-luciferase and ChIP assays. MLL4 positively regulated PRDM1 expression by inducing methylation in the PRDM1 enhancer region and ultimately reduced IL-33 expression. miR-27b-3p targeted MLL4/PRDM1 to activate IL-33 and maintain the stem-like function of GSCs. In conclusion, our study elucidated that M2-TAM-derived exosomal miR-27b-3p enhanced the tumorigenicity of GSCs through the MLL4/PRDM1/IL-33 axis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2058-7716
2058-7716
DOI:10.1038/s41420-022-01081-7