Novel domestic building energy consumption dataset: 1D timeseries and 2D Gramian Angular Fields representation

This data article describes a dataset collected in 2022 in a domestic household in the UK. The data provides appliance-level power consumption data and ambient environmental conditions as a timeseries and as a collection of 2D images created using Gramian Angular Fields (GAF). The importance of the...

Full description

Saved in:
Bibliographic Details
Published inData in brief Vol. 47; p. 108985
Main Authors Alsalemi, Abdullah, Amira, Abbes, Malekmohamadi, Hossein, Diao, Kegong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.04.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This data article describes a dataset collected in 2022 in a domestic household in the UK. The data provides appliance-level power consumption data and ambient environmental conditions as a timeseries and as a collection of 2D images created using Gramian Angular Fields (GAF). The importance of the dataset lies in (a) providing the research community with a dataset that combines appliance-level data coupled with important contextual information for the surrounding environment; (b) presents energy data summaries as 2D images to help obtain novel insights using data visualization and Machine Learning (ML). The methodology involves installing smart plugs to a number of domestic appliances, environmental and occupancy sensors, and connecting the plugs and the sensors to a High-Performance Edge Computing (HPEC) system to privately store, pre-process, and post-process data. The heterogenous data include several parameters, including power consumption (W), voltage (V), current (A), ambient indoor temperature (°C), relative indoor humidity (RH%), and occupancy (binary). The dataset also includes outdoor weather conditions based on data from The Norwegian Meteorological Institute (MET Norway) including temperature (°C), outdoor humidity (RH%), barometric pressure (hPA), wind bearing (deg), and windspeed (m/s). This dataset is valuable for energy efficiency researchers, electrical engineers, and computer scientists to develop, validate, and deploy and computer vision and data-driven energy efficiency systems.
AbstractList This data article describes a dataset collected in 2022 in a domestic household in the UK. The data provides appliance-level power consumption data and ambient environmental conditions as a timeseries and as a collection of 2D images created using Gramian Angular Fields (GAF). The importance of the dataset lies in (a) providing the research community with a dataset that combines appliance-level data coupled with important contextual information for the surrounding environment; (b) presents energy data summaries as 2D images to help obtain novel insights using data visualization and Machine Learning (ML). The methodology involves installing smart plugs to a number of domestic appliances, environmental and occupancy sensors, and connecting the plugs and the sensors to a High-Performance Edge Computing (HPEC) system to privately store, pre-process, and post-process data. The heterogenous data include several parameters, including power consumption (W), voltage (V), current (A), ambient indoor temperature (°C), relative indoor humidity (RH%), and occupancy (binary). The dataset also includes outdoor weather conditions based on data from The Norwegian Meteorological Institute (MET Norway) including temperature (°C), outdoor humidity (RH%), barometric pressure (hPA), wind bearing (deg), and windspeed (m/s). This dataset is valuable for energy efficiency researchers, electrical engineers, and computer scientists to develop, validate, and deploy and computer vision and data-driven energy efficiency systems.
ArticleNumber 108985
Author Diao, Kegong
Amira, Abbes
Alsalemi, Abdullah
Malekmohamadi, Hossein
Author_xml – sequence: 1
  givenname: Abdullah
  orcidid: 0000-0001-7574-4766
  surname: Alsalemi
  fullname: Alsalemi, Abdullah
  email: abdullah.alsalemi@my365.dmu.ac.uk
  organization: Institute of Artificial Intelligence, De Montfort University, Leicester, UK
– sequence: 2
  givenname: Abbes
  orcidid: 0000-0003-1652-0492
  surname: Amira
  fullname: Amira, Abbes
  organization: Institute of Artificial Intelligence, De Montfort University, Leicester, UK
– sequence: 3
  givenname: Hossein
  orcidid: 0000-0003-1457-0162
  surname: Malekmohamadi
  fullname: Malekmohamadi, Hossein
  organization: Institute of Artificial Intelligence, De Montfort University, Leicester, UK
– sequence: 4
  givenname: Kegong
  surname: Diao
  fullname: Diao, Kegong
  organization: Institute of Energy and Sustainable Development, De Montfort University, Leicester, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36875214$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vFSEUxYmpsbX2A7gxLN28V_7OMJqYNK2tTRrd6JowcHnyMgNPmHlJv708p23ajSvgcu4P7jlv0VFMERB6T8maEtqcb9cu9GtGGK9n1Sn5Cp0wLtmKC9IdPdsfo7NStoQQKkUtyjfomDeqlYyKExS_pz0M2KURyhQs7ucwuBA3GCLkzT22KZZ53E0hRezMZApMnzC9wlOoDZADFGyiw-wK32QzBhPxRdzMg8n4OsDgCs6wy1UZJ3NgvEOvvRkKnD2sp-jX9defl99Wdz9ubi8v7lZW0nZaeQbgGG1ta8EKT6l1rHNAfKOEF8bKnlDXQqfANo4J0wjqDbWNbJhRXHB-im4Xrktmq3c5jCbf62SC_ldIeaNNrvMOoJVlYJhQ1Pdc-L7rZe85OOc6wnrZ2cr6srB2cz-Cs3WWbIYX0Jc3MfzWm7TXXdfKRrEK-PgAyOnPXH3WYygWhsFESHPRrFW8Va1gokrpIrU5lZLBPz1DiT7Erre6xq4Psesl9trz4fn_njoeQ66Cz4sAquP7AFkXGyBacCGDnaol4T_4v2OQwhA
CitedBy_id crossref_primary_10_3389_fnhum_2024_1336157
Cites_doi 10.1109/ACCESS.2020.2967900
10.3390/en13133497
10.1016/j.ecolecon.2018.01.018
10.1016/j.dib.2022.108419
ContentType Journal Article
Copyright 2023 The Authors
2023 The Authors.
2023 The Authors 2023
Copyright_xml – notice: 2023 The Authors
– notice: 2023 The Authors.
– notice: 2023 The Authors 2023
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.dib.2023.108985
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2352-3409
EndPage 108985
ExternalDocumentID oai_doaj_org_article_8c2ea2481fb34fb9b5bf3eddd902b59c
10_1016_j_dib_2023_108985
36875214
S2352340923001038
Genre Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
ADVLN
AFJKZ
AKRWK
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c517t-f2eed217c7cec4f11cd29de0f684f4ac5b01d7e98ec6d24a641fa1c6562a83433
IEDL.DBID RPM
ISSN 2352-3409
IngestDate Tue Oct 22 15:15:45 EDT 2024
Tue Sep 17 21:31:52 EDT 2024
Sat Oct 05 06:05:36 EDT 2024
Thu Sep 26 19:24:13 EDT 2024
Sat Sep 28 08:19:16 EDT 2024
Tue Jul 25 20:56:50 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Internet of things
Smart plug
Visualization
Image processing
Occupancy
Energy efficiency
Environmental sensing
Language English
License This is an open access article under the CC BY license.
2023 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-f2eed217c7cec4f11cd29de0f684f4ac5b01d7e98ec6d24a641fa1c6562a83433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1457-0162
0000-0001-7574-4766
0000-0003-1652-0492
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975682/
PMID 36875214
PQID 2783787424
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_8c2ea2481fb34fb9b5bf3eddd902b59c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9975682
proquest_miscellaneous_2783787424
crossref_primary_10_1016_j_dib_2023_108985
pubmed_primary_36875214
elsevier_sciencedirect_doi_10_1016_j_dib_2023_108985
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Data in brief
PublicationTitleAlternate Data Brief
PublicationYear 2023
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References (Accessed 22 September 2021).
Alsalemi, Amira, Malekmohamadi, Diao, Bensaali (bib0008) 2021
Wang, Oates (bib0007) 2015
Alsalemi, Amira, Malekmohamadi, Diao (bib0004) 2022
Benavente-Peces, Ibadah (bib0001) 2020; 13
Attia (bib0002) 2022; 43
Hong, Martinez, Fajardo (bib0005) 2020; 8
Andor, Fels (bib0003) 2018; 148
K.P. Thanaraj, B. Parvathavarthini, U.J. Tanik, V. Rajinikanth, S. Kadry, K. Kamalanand, Implementation of Deep Neural Networks to Classify EEG Signals using Gramian Angular Summation Field for Epilepsy Diagnosis, ArXiv200304534 Cs Eess. (2020).
Benavente-Peces (10.1016/j.dib.2023.108985_bib0001) 2020; 13
Alsalemi (10.1016/j.dib.2023.108985_bib0008) 2021
Hong (10.1016/j.dib.2023.108985_bib0005) 2020; 8
Andor (10.1016/j.dib.2023.108985_bib0003) 2018; 148
Wang (10.1016/j.dib.2023.108985_bib0007) 2015
Attia (10.1016/j.dib.2023.108985_bib0002) 2022; 43
10.1016/j.dib.2023.108985_bib0006
Alsalemi (10.1016/j.dib.2023.108985_bib0004) 2022
References_xml – volume: 148
  start-page: 178
  year: 2018
  end-page: 210
  ident: bib0003
  article-title: Behavioral economics and energy conservation – a systematic review of non-price interventions and their causal effects
  publication-title: Ecol. Econ.
  contributor:
    fullname: Fels
– volume: 8
  start-page: 18741
  year: 2020
  end-page: 18753
  ident: bib0005
  article-title: Day-ahead solar irradiation forecasting utilizing gramian angular field and convolutional long short-term memory
  publication-title: IEEE Access
  contributor:
    fullname: Fajardo
– start-page: 1
  year: 2022
  end-page: 4
  ident: bib0004
  article-title: Facilitating deep learning for edge computing: a case study on data classification
  publication-title: 2022 IEEE Conf. Dependable Secure Comput. DSC
  contributor:
    fullname: Diao
– volume: 43
  year: 2022
  ident: bib0002
  article-title: Data on residential nearly Zero Energy Buildings (nZEB) design in Eastern Europe
  publication-title: Data Brief
  contributor:
    fullname: Attia
– year: 2021
  ident: bib0008
  article-title: Elevating energy data analysis with M2GAF: micro-moment driven Gramian angular field visualizations
  publication-title: International Conference on Applied Energy
  contributor:
    fullname: Bensaali
– volume: 13
  start-page: 3497
  year: 2020
  ident: bib0001
  article-title: Buildings energy efficiency analysis and classification using various machine learning technique classifiers
  publication-title: Energies
  contributor:
    fullname: Ibadah
– year: 2015
  ident: bib0007
  article-title: Imaging time-series to improve classification and imputation
  publication-title: Twenty-Fourth Int. Jt. Conf. Artif. Intell.
  contributor:
    fullname: Oates
– volume: 8
  start-page: 18741
  year: 2020
  ident: 10.1016/j.dib.2023.108985_bib0005
  article-title: Day-ahead solar irradiation forecasting utilizing gramian angular field and convolutional long short-term memory
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2967900
  contributor:
    fullname: Hong
– ident: 10.1016/j.dib.2023.108985_bib0006
– year: 2021
  ident: 10.1016/j.dib.2023.108985_bib0008
  article-title: Elevating energy data analysis with M2GAF: micro-moment driven Gramian angular field visualizations
  contributor:
    fullname: Alsalemi
– volume: 13
  start-page: 3497
  year: 2020
  ident: 10.1016/j.dib.2023.108985_bib0001
  article-title: Buildings energy efficiency analysis and classification using various machine learning technique classifiers
  publication-title: Energies
  doi: 10.3390/en13133497
  contributor:
    fullname: Benavente-Peces
– volume: 148
  start-page: 178
  year: 2018
  ident: 10.1016/j.dib.2023.108985_bib0003
  article-title: Behavioral economics and energy conservation – a systematic review of non-price interventions and their causal effects
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2018.01.018
  contributor:
    fullname: Andor
– start-page: 1
  year: 2022
  ident: 10.1016/j.dib.2023.108985_bib0004
  article-title: Facilitating deep learning for edge computing: a case study on data classification
  contributor:
    fullname: Alsalemi
– year: 2015
  ident: 10.1016/j.dib.2023.108985_bib0007
  article-title: Imaging time-series to improve classification and imputation
  contributor:
    fullname: Wang
– volume: 43
  year: 2022
  ident: 10.1016/j.dib.2023.108985_bib0002
  article-title: Data on residential nearly Zero Energy Buildings (nZEB) design in Eastern Europe
  publication-title: Data Brief
  doi: 10.1016/j.dib.2022.108419
  contributor:
    fullname: Attia
SSID ssj0001542355
Score 2.3145666
Snippet This data article describes a dataset collected in 2022 in a domestic household in the UK. The data provides appliance-level power consumption data and ambient...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 108985
SubjectTerms Data
Energy efficiency
Environmental sensing
Image processing
Internet of things
Occupancy
Smart plug
Visualization
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA2yT76I6-f4RQQfVKg2adokvq2u4yK4Ty7sW0huEhzZzch01t_vTdIuMwr6IgwMTIe2t_cmOaHnnkPICz1IYB1kEoOCRkQJjRMuNMCtx49QTuVu5C-nw8mZ-Hzen-9YfWVOWJUHrg_urQIeLBeKRdeJ6LTrXeyC91633PUayuzb6p3NVO0PRphQLE_xizcd7mLmV5qF3OVX7k02Ds8UO519lHcWpaLdv7c2_Yk9f6dQ7qxJy9vk1gQm6VEN4pDcCOkOOZyG60hfTprSr-6SdLr-GS6oX19mVQ2gbnLDpqH0_lEonZhl-qCZNDqG7TvKjmmxns9ayCO1yVN-TD9t7CWWFD1K2cR-Q5eZAjfSIo45NzKle-Rs-fHrh5NmslpooGdy20SOayXuTkBCABEZA8-1D20clIjCQu9a5mXQKsDgubCDYNEyQDDIrepE190nB2mdwkNCpWx7p5kX4K3AQW1hYAFxDkiEmoGLBXk9P2vzoypqmJlq9t1gYkxOjKmJWZD3ORvXf8xi2OUHLBEzlYj5V4ksiJhzaSZcUfECnmr1t2s_n_NucMzlFyk2hfXVaLI7CU50IgfzoNbB9R12A-4AOcMjcq9C9kLYP5JW34qut9ayHxR_9D9ifkxu5lAqx-gJOdhursJThE9b96yMlF_ouBrk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA5zvvgizp_XX0TwQYXKTZo2iSAyndchuCcv7C0kJ-mcbK22d6L_vSdpOq0On4QLhdvSNj05zXfod76PkMe6lsBKiCQGBYVoJBROuFAAtx5_QjkVu5E_HNT7a_H-sDrcIpO9VX6Aw4WlXfSTWvcnz79__fEKE_7lL66Wx7I_-oBHxpxW1SVymUddrsjky2h_bBpG7JB8UHHDixJLm-k750Vnma1USdB_tmD9DUj_5FX-tlCtrpGrGWHS3XFK7JCt0F4nOzmHB_okC00_vUHag-5bOKG-O41SG0BdtsimITUEUkjtmemdQiOTdAibF5Tt0eRHHwWSB2pbT_kefdfbU5xndLeNzvY9XUVe3ECTYubU3dTeJOvV249v9ovsv1BAxeSmaDguoFiygIQAomEMPNc-LJtaiUZYqNySeRm0ClB7LmwtWGMZIELkVpUYgFtku-3acIdQKZeV08wL8FZgpluoWUDwAxLxZ-BiQZ5Nz9p8GWU2zMQ_-2wwMCYGxoyBWZDXMRrnB0aF7PRH1x-ZnHBGAQ-WC8UaV4rGaVe5pgzee73krtKwIGKKpclgYwQReKrjf1370RR3g4kYv67YNnRng4mWJfj2E3Ewt8d5cH6HZY1lIWe4R85myGwI8z3t8ack9q21rGrF7_6PMd8jV-JQRuLRfbK96c_CA8RUG_cwZcpPzisiGw
  priority: 102
  providerName: Scholars Portal
Title Novel domestic building energy consumption dataset: 1D timeseries and 2D Gramian Angular Fields representation
URI https://dx.doi.org/10.1016/j.dib.2023.108985
https://www.ncbi.nlm.nih.gov/pubmed/36875214
https://search.proquest.com/docview/2783787424
https://pubmed.ncbi.nlm.nih.gov/PMC9975682
https://doaj.org/article/8c2ea2481fb34fb9b5bf3eddd902b59c
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2ceGCGJ9lUBmJAyClrR0ntrmNjjIhtXBgUsXFsp-dUbQ6U9Pt78d2kqkFiQNSlEOcDzvvvbyf4997D6E3suRAcogkBgEZqzhkhhmXAdU2bEwYEaOR54vy_IJ9WRbLA1T0sTCJtA9mNfJX65Ff_Uzcyus1jHue2PjbfColL0pBx4foMCjozhS9DQ0OCKEo-hXMxOWyKzOKdcIjo07Gssk7Piil6t9zRX9DzT8ZkzsuaPYQPeiwIz5t-3iMDpx_hI4762zw2y6F9LvHyC_qW3eFbb2OSTQAm674NXYp1A9DCrxMXwscOaKN237A5AynSvMx9XGDtbeYnuHPG70OGoRPfaxZv8GzyHhrcMqF2cct-SfoYvbp-_Q86yorZFAQvs0qGlxjmIwABwesIgQsldZNqlKwimkozIRY7qRwUFrKdMlIpQkE7Ee1yFmeP0VHvvbuOcKcTwojiWVgNQs2rKEkLsAa4AFZOsoG6H3_rtV1m0BD9cyyXyoIRkXBqFYwA_QxSuPuxJj7Oh2oN5eq0wAlgDpNmSCVyVllpClMlTtrrZxQU0gYINbLUnUwooUH4Varfz37dS93FUwsrpto7-qbRsViJOG7xuJgnrV6cNfDvAwTPkpCC9_TkL0h7LcErU5pvDstfvHfV56g-7H_LY_oJTrabm7cqwCRtmaYfi2E_ZyJIbq3mC6__hgmM_kNrQ4Z0Q
link.rule.ids 230,315,730,783,787,867,888,2109,24332,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcAFKI-y5WUkDoCUbOzYccKttCwLdFccWtSbZY-dsrSbVJtdDvx6bCepdouEBFJOcR6ezNj-rHzzDUKvikwAScGTGHKIWCkg0kzbCKgy7mC5zn028mSajU_Y51N-uoV4nwsTSPugZ3F1MY-r2ffArbycw7DniQ2_Tg6KQvAsp8Mb6KYbr0m2tklvk4MdRuC8_4cZ2FxmpmNfKdxz6gpfOHltFQpi_RuL0Z9g8zpncm0RGt1F3_rut9yT83i11DH8uqbs-M_23UN3OliK99vmHbRlq_topxv4DX7dqVO_eYCqaf3TXmBTz70-B2Dd1dXGNmQRYgg5nWEiwp5-2tjlO0wOcShi71WVG6wqg-kh_rhQcxeceL8681xYPPJkugYHmc0-Jap6iE5GH44PxlFXtCECTsQyKqlbdd0-BwRYYCUhYGhhbFJmOSuZAq4TYoQtcguZoUxljJSKgIOVVOUpS9NHaLuqK_sYYSESrgtiGBjF3PSgICPWISYQDrRaygbobe9Eedlqc8ietPZDOo9L73HZenyA3ns3X13oZbXDiXpxJruPL3OgVlGWk1KnrNSF5rpMrTGmSKjmBQwQ64NEdgilRR7uUbO_vftlH1DSjV7_S0ZVtl410tc5cVMm88bstgF21cM0c3tJSlyL2Ai9DRM2W1xABYXwLoD2_vvOF-jW-HhyJI8-Tb88Qbe9LS1d6SnaXi5W9plDYkv9PIy734kKOFM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgLUB5leRqJAyAlGztO7HArXZby6KoHKlVcLHvslIVustpkOfDrsZ2k2i0Sh0o5xc5jNGP7s_zNNwi9KnIOJAVPYhAQsZJDpJm2EVBl3MWEFj4b-WiWH56wz6fZ6Uapr0DaBz2Pq_NFXM1_BG7lcgHjgSc2Pj46KAqe5YKOl6YcX0c33JhNxMZGvUsQdjghy4ZzzMDoMnMd-2rhnldX-OLJGytREOzfWpD-BZyXeZMbC9H0Dvo-mNDxT37F61bH8OeSuuOVbLyLbvfwFO93XXbRNVvdQ7v9BNDg171K9Zv7qJrVv-05NvXC63QA1n19bWxDNiGGkNsZJiTsaaiNbd9hMsGhmL1XV26wqgymE_xxpRYuSPF-deY5sXjqSXUNDnKbQ2pU9QCdTD98OziM-uINEWSEt1FJ3err9jvAwQIrCQFDC2OTMhesZAoynRDDbSEs5IYylTNSKgIOXlIlUpamD9FOVVf2EcKcJ5kuiGFgFHPThIKcWIecgDvwaikbobeDI-Wy0-iQA3ntp3Rel97rsvP6CL33rr7o6OW1w416dSZ7B0gB1CrKBCl1ykpd6EyXqTXGFAnVWQEjxIZAkT1S6RCIe9X8f99-OQSVdKPYH82oytbrRvp6J27qZN6YvS7ILv4wzd2ekhLXwrfCb8uE7RYXVEEpvA-ix1d-8gW6eTyZyq-fZl-eoFvelI619BTttKu1feYAWaufh6H3FyQQOtM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+domestic+building+energy+consumption+dataset%3A+1D+timeseries+and+2D+Gramian+Angular+Fields+representation&rft.jtitle=Data+in+brief&rft.au=Abdullah+Alsalemi&rft.au=Abbes+Amira&rft.au=Hossein+Malekmohamadi&rft.au=Kegong+Diao&rft.date=2023-04-01&rft.pub=Elsevier&rft.issn=2352-3409&rft.eissn=2352-3409&rft.volume=47&rft.spage=108985&rft_id=info:doi/10.1016%2Fj.dib.2023.108985&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8c2ea2481fb34fb9b5bf3eddd902b59c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3409&client=summon