Novel domestic building energy consumption dataset: 1D timeseries and 2D Gramian Angular Fields representation
This data article describes a dataset collected in 2022 in a domestic household in the UK. The data provides appliance-level power consumption data and ambient environmental conditions as a timeseries and as a collection of 2D images created using Gramian Angular Fields (GAF). The importance of the...
Saved in:
Published in | Data in brief Vol. 47; p. 108985 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.04.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This data article describes a dataset collected in 2022 in a domestic household in the UK. The data provides appliance-level power consumption data and ambient environmental conditions as a timeseries and as a collection of 2D images created using Gramian Angular Fields (GAF). The importance of the dataset lies in (a) providing the research community with a dataset that combines appliance-level data coupled with important contextual information for the surrounding environment; (b) presents energy data summaries as 2D images to help obtain novel insights using data visualization and Machine Learning (ML). The methodology involves installing smart plugs to a number of domestic appliances, environmental and occupancy sensors, and connecting the plugs and the sensors to a High-Performance Edge Computing (HPEC) system to privately store, pre-process, and post-process data. The heterogenous data include several parameters, including power consumption (W), voltage (V), current (A), ambient indoor temperature (°C), relative indoor humidity (RH%), and occupancy (binary). The dataset also includes outdoor weather conditions based on data from The Norwegian Meteorological Institute (MET Norway) including temperature (°C), outdoor humidity (RH%), barometric pressure (hPA), wind bearing (deg), and windspeed (m/s). This dataset is valuable for energy efficiency researchers, electrical engineers, and computer scientists to develop, validate, and deploy and computer vision and data-driven energy efficiency systems. |
---|---|
AbstractList | This data article describes a dataset collected in 2022 in a domestic household in the UK. The data provides appliance-level power consumption data and ambient environmental conditions as a timeseries and as a collection of 2D images created using Gramian Angular Fields (GAF). The importance of the dataset lies in (a) providing the research community with a dataset that combines appliance-level data coupled with important contextual information for the surrounding environment; (b) presents energy data summaries as 2D images to help obtain novel insights using data visualization and Machine Learning (ML). The methodology involves installing smart plugs to a number of domestic appliances, environmental and occupancy sensors, and connecting the plugs and the sensors to a High-Performance Edge Computing (HPEC) system to privately store, pre-process, and post-process data. The heterogenous data include several parameters, including power consumption (W), voltage (V), current (A), ambient indoor temperature (°C), relative indoor humidity (RH%), and occupancy (binary). The dataset also includes outdoor weather conditions based on data from The Norwegian Meteorological Institute (MET Norway) including temperature (°C), outdoor humidity (RH%), barometric pressure (hPA), wind bearing (deg), and windspeed (m/s). This dataset is valuable for energy efficiency researchers, electrical engineers, and computer scientists to develop, validate, and deploy and computer vision and data-driven energy efficiency systems. |
ArticleNumber | 108985 |
Author | Diao, Kegong Amira, Abbes Alsalemi, Abdullah Malekmohamadi, Hossein |
Author_xml | – sequence: 1 givenname: Abdullah orcidid: 0000-0001-7574-4766 surname: Alsalemi fullname: Alsalemi, Abdullah email: abdullah.alsalemi@my365.dmu.ac.uk organization: Institute of Artificial Intelligence, De Montfort University, Leicester, UK – sequence: 2 givenname: Abbes orcidid: 0000-0003-1652-0492 surname: Amira fullname: Amira, Abbes organization: Institute of Artificial Intelligence, De Montfort University, Leicester, UK – sequence: 3 givenname: Hossein orcidid: 0000-0003-1457-0162 surname: Malekmohamadi fullname: Malekmohamadi, Hossein organization: Institute of Artificial Intelligence, De Montfort University, Leicester, UK – sequence: 4 givenname: Kegong surname: Diao fullname: Diao, Kegong organization: Institute of Energy and Sustainable Development, De Montfort University, Leicester, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36875214$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9vFSEUxYmpsbX2A7gxLN28V_7OMJqYNK2tTRrd6JowcHnyMgNPmHlJv708p23ajSvgcu4P7jlv0VFMERB6T8maEtqcb9cu9GtGGK9n1Sn5Cp0wLtmKC9IdPdsfo7NStoQQKkUtyjfomDeqlYyKExS_pz0M2KURyhQs7ucwuBA3GCLkzT22KZZ53E0hRezMZApMnzC9wlOoDZADFGyiw-wK32QzBhPxRdzMg8n4OsDgCs6wy1UZJ3NgvEOvvRkKnD2sp-jX9defl99Wdz9ubi8v7lZW0nZaeQbgGG1ta8EKT6l1rHNAfKOEF8bKnlDXQqfANo4J0wjqDbWNbJhRXHB-im4Xrktmq3c5jCbf62SC_ldIeaNNrvMOoJVlYJhQ1Pdc-L7rZe85OOc6wnrZ2cr6srB2cz-Cs3WWbIYX0Jc3MfzWm7TXXdfKRrEK-PgAyOnPXH3WYygWhsFESHPRrFW8Va1gokrpIrU5lZLBPz1DiT7Erre6xq4Psesl9trz4fn_njoeQ66Cz4sAquP7AFkXGyBacCGDnaol4T_4v2OQwhA |
CitedBy_id | crossref_primary_10_3389_fnhum_2024_1336157 |
Cites_doi | 10.1109/ACCESS.2020.2967900 10.3390/en13133497 10.1016/j.ecolecon.2018.01.018 10.1016/j.dib.2022.108419 |
ContentType | Journal Article |
Copyright | 2023 The Authors 2023 The Authors. 2023 The Authors 2023 |
Copyright_xml | – notice: 2023 The Authors – notice: 2023 The Authors. – notice: 2023 The Authors 2023 |
DBID | 6I. AAFTH NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.dib.2023.108985 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2352-3409 |
EndPage | 108985 |
ExternalDocumentID | oai_doaj_org_article_8c2ea2481fb34fb9b5bf3eddd902b59c 10_1016_j_dib_2023_108985 36875214 S2352340923001038 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ ADVLN AFJKZ AKRWK NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c517t-f2eed217c7cec4f11cd29de0f684f4ac5b01d7e98ec6d24a641fa1c6562a83433 |
IEDL.DBID | RPM |
ISSN | 2352-3409 |
IngestDate | Tue Oct 22 15:15:45 EDT 2024 Tue Sep 17 21:31:52 EDT 2024 Sat Oct 05 06:05:36 EDT 2024 Thu Sep 26 19:24:13 EDT 2024 Sat Sep 28 08:19:16 EDT 2024 Tue Jul 25 20:56:50 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Internet of things Smart plug Visualization Image processing Occupancy Energy efficiency Environmental sensing |
Language | English |
License | This is an open access article under the CC BY license. 2023 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-f2eed217c7cec4f11cd29de0f684f4ac5b01d7e98ec6d24a641fa1c6562a83433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1457-0162 0000-0001-7574-4766 0000-0003-1652-0492 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975682/ |
PMID | 36875214 |
PQID | 2783787424 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8c2ea2481fb34fb9b5bf3eddd902b59c pubmedcentral_primary_oai_pubmedcentral_nih_gov_9975682 proquest_miscellaneous_2783787424 crossref_primary_10_1016_j_dib_2023_108985 pubmed_primary_36875214 elsevier_sciencedirect_doi_10_1016_j_dib_2023_108985 |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Data in brief |
PublicationTitleAlternate | Data Brief |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | (Accessed 22 September 2021). Alsalemi, Amira, Malekmohamadi, Diao, Bensaali (bib0008) 2021 Wang, Oates (bib0007) 2015 Alsalemi, Amira, Malekmohamadi, Diao (bib0004) 2022 Benavente-Peces, Ibadah (bib0001) 2020; 13 Attia (bib0002) 2022; 43 Hong, Martinez, Fajardo (bib0005) 2020; 8 Andor, Fels (bib0003) 2018; 148 K.P. Thanaraj, B. Parvathavarthini, U.J. Tanik, V. Rajinikanth, S. Kadry, K. Kamalanand, Implementation of Deep Neural Networks to Classify EEG Signals using Gramian Angular Summation Field for Epilepsy Diagnosis, ArXiv200304534 Cs Eess. (2020). Benavente-Peces (10.1016/j.dib.2023.108985_bib0001) 2020; 13 Alsalemi (10.1016/j.dib.2023.108985_bib0008) 2021 Hong (10.1016/j.dib.2023.108985_bib0005) 2020; 8 Andor (10.1016/j.dib.2023.108985_bib0003) 2018; 148 Wang (10.1016/j.dib.2023.108985_bib0007) 2015 Attia (10.1016/j.dib.2023.108985_bib0002) 2022; 43 10.1016/j.dib.2023.108985_bib0006 Alsalemi (10.1016/j.dib.2023.108985_bib0004) 2022 |
References_xml | – volume: 148 start-page: 178 year: 2018 end-page: 210 ident: bib0003 article-title: Behavioral economics and energy conservation – a systematic review of non-price interventions and their causal effects publication-title: Ecol. Econ. contributor: fullname: Fels – volume: 8 start-page: 18741 year: 2020 end-page: 18753 ident: bib0005 article-title: Day-ahead solar irradiation forecasting utilizing gramian angular field and convolutional long short-term memory publication-title: IEEE Access contributor: fullname: Fajardo – start-page: 1 year: 2022 end-page: 4 ident: bib0004 article-title: Facilitating deep learning for edge computing: a case study on data classification publication-title: 2022 IEEE Conf. Dependable Secure Comput. DSC contributor: fullname: Diao – volume: 43 year: 2022 ident: bib0002 article-title: Data on residential nearly Zero Energy Buildings (nZEB) design in Eastern Europe publication-title: Data Brief contributor: fullname: Attia – year: 2021 ident: bib0008 article-title: Elevating energy data analysis with M2GAF: micro-moment driven Gramian angular field visualizations publication-title: International Conference on Applied Energy contributor: fullname: Bensaali – volume: 13 start-page: 3497 year: 2020 ident: bib0001 article-title: Buildings energy efficiency analysis and classification using various machine learning technique classifiers publication-title: Energies contributor: fullname: Ibadah – year: 2015 ident: bib0007 article-title: Imaging time-series to improve classification and imputation publication-title: Twenty-Fourth Int. Jt. Conf. Artif. Intell. contributor: fullname: Oates – volume: 8 start-page: 18741 year: 2020 ident: 10.1016/j.dib.2023.108985_bib0005 article-title: Day-ahead solar irradiation forecasting utilizing gramian angular field and convolutional long short-term memory publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2967900 contributor: fullname: Hong – ident: 10.1016/j.dib.2023.108985_bib0006 – year: 2021 ident: 10.1016/j.dib.2023.108985_bib0008 article-title: Elevating energy data analysis with M2GAF: micro-moment driven Gramian angular field visualizations contributor: fullname: Alsalemi – volume: 13 start-page: 3497 year: 2020 ident: 10.1016/j.dib.2023.108985_bib0001 article-title: Buildings energy efficiency analysis and classification using various machine learning technique classifiers publication-title: Energies doi: 10.3390/en13133497 contributor: fullname: Benavente-Peces – volume: 148 start-page: 178 year: 2018 ident: 10.1016/j.dib.2023.108985_bib0003 article-title: Behavioral economics and energy conservation – a systematic review of non-price interventions and their causal effects publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2018.01.018 contributor: fullname: Andor – start-page: 1 year: 2022 ident: 10.1016/j.dib.2023.108985_bib0004 article-title: Facilitating deep learning for edge computing: a case study on data classification contributor: fullname: Alsalemi – year: 2015 ident: 10.1016/j.dib.2023.108985_bib0007 article-title: Imaging time-series to improve classification and imputation contributor: fullname: Wang – volume: 43 year: 2022 ident: 10.1016/j.dib.2023.108985_bib0002 article-title: Data on residential nearly Zero Energy Buildings (nZEB) design in Eastern Europe publication-title: Data Brief doi: 10.1016/j.dib.2022.108419 contributor: fullname: Attia |
SSID | ssj0001542355 |
Score | 2.3145666 |
Snippet | This data article describes a dataset collected in 2022 in a domestic household in the UK. The data provides appliance-level power consumption data and ambient... |
SourceID | doaj pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 108985 |
SubjectTerms | Data Energy efficiency Environmental sensing Image processing Internet of things Occupancy Smart plug Visualization |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA2yT76I6-f4RQQfVKg2adokvq2u4yK4Ty7sW0huEhzZzch01t_vTdIuMwr6IgwMTIe2t_cmOaHnnkPICz1IYB1kEoOCRkQJjRMuNMCtx49QTuVu5C-nw8mZ-Hzen-9YfWVOWJUHrg_urQIeLBeKRdeJ6LTrXeyC91633PUayuzb6p3NVO0PRphQLE_xizcd7mLmV5qF3OVX7k02Ds8UO519lHcWpaLdv7c2_Yk9f6dQ7qxJy9vk1gQm6VEN4pDcCOkOOZyG60hfTprSr-6SdLr-GS6oX19mVQ2gbnLDpqH0_lEonZhl-qCZNDqG7TvKjmmxns9ayCO1yVN-TD9t7CWWFD1K2cR-Q5eZAjfSIo45NzKle-Rs-fHrh5NmslpooGdy20SOayXuTkBCABEZA8-1D20clIjCQu9a5mXQKsDgubCDYNEyQDDIrepE190nB2mdwkNCpWx7p5kX4K3AQW1hYAFxDkiEmoGLBXk9P2vzoypqmJlq9t1gYkxOjKmJWZD3ORvXf8xi2OUHLBEzlYj5V4ksiJhzaSZcUfECnmr1t2s_n_NucMzlFyk2hfXVaLI7CU50IgfzoNbB9R12A-4AOcMjcq9C9kLYP5JW34qut9ayHxR_9D9ifkxu5lAqx-gJOdhursJThE9b96yMlF_ouBrk priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA5zvvgizp_XX0TwQYXKTZo2iSAyndchuCcv7C0kJ-mcbK22d6L_vSdpOq0On4QLhdvSNj05zXfod76PkMe6lsBKiCQGBYVoJBROuFAAtx5_QjkVu5E_HNT7a_H-sDrcIpO9VX6Aw4WlXfSTWvcnz79__fEKE_7lL66Wx7I_-oBHxpxW1SVymUddrsjky2h_bBpG7JB8UHHDixJLm-k750Vnma1USdB_tmD9DUj_5FX-tlCtrpGrGWHS3XFK7JCt0F4nOzmHB_okC00_vUHag-5bOKG-O41SG0BdtsimITUEUkjtmemdQiOTdAibF5Tt0eRHHwWSB2pbT_kefdfbU5xndLeNzvY9XUVe3ECTYubU3dTeJOvV249v9ovsv1BAxeSmaDguoFiygIQAomEMPNc-LJtaiUZYqNySeRm0ClB7LmwtWGMZIELkVpUYgFtku-3acIdQKZeV08wL8FZgpluoWUDwAxLxZ-BiQZ5Nz9p8GWU2zMQ_-2wwMCYGxoyBWZDXMRrnB0aF7PRH1x-ZnHBGAQ-WC8UaV4rGaVe5pgzee73krtKwIGKKpclgYwQReKrjf1370RR3g4kYv67YNnRng4mWJfj2E3Ewt8d5cH6HZY1lIWe4R85myGwI8z3t8ack9q21rGrF7_6PMd8jV-JQRuLRfbK96c_CA8RUG_cwZcpPzisiGw priority: 102 providerName: Scholars Portal |
Title | Novel domestic building energy consumption dataset: 1D timeseries and 2D Gramian Angular Fields representation |
URI | https://dx.doi.org/10.1016/j.dib.2023.108985 https://www.ncbi.nlm.nih.gov/pubmed/36875214 https://search.proquest.com/docview/2783787424 https://pubmed.ncbi.nlm.nih.gov/PMC9975682 https://doaj.org/article/8c2ea2481fb34fb9b5bf3eddd902b59c |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2ceGCGJ9lUBmJAyClrR0ntrmNjjIhtXBgUsXFsp-dUbQ6U9Pt78d2kqkFiQNSlEOcDzvvvbyf4997D6E3suRAcogkBgEZqzhkhhmXAdU2bEwYEaOR54vy_IJ9WRbLA1T0sTCJtA9mNfJX65Ff_Uzcyus1jHue2PjbfColL0pBx4foMCjozhS9DQ0OCKEo-hXMxOWyKzOKdcIjo07Gssk7Piil6t9zRX9DzT8ZkzsuaPYQPeiwIz5t-3iMDpx_hI4762zw2y6F9LvHyC_qW3eFbb2OSTQAm674NXYp1A9DCrxMXwscOaKN237A5AynSvMx9XGDtbeYnuHPG70OGoRPfaxZv8GzyHhrcMqF2cct-SfoYvbp-_Q86yorZFAQvs0qGlxjmIwABwesIgQsldZNqlKwimkozIRY7qRwUFrKdMlIpQkE7Ee1yFmeP0VHvvbuOcKcTwojiWVgNQs2rKEkLsAa4AFZOsoG6H3_rtV1m0BD9cyyXyoIRkXBqFYwA_QxSuPuxJj7Oh2oN5eq0wAlgDpNmSCVyVllpClMlTtrrZxQU0gYINbLUnUwooUH4Varfz37dS93FUwsrpto7-qbRsViJOG7xuJgnrV6cNfDvAwTPkpCC9_TkL0h7LcErU5pvDstfvHfV56g-7H_LY_oJTrabm7cqwCRtmaYfi2E_ZyJIbq3mC6__hgmM_kNrQ4Z0Q |
link.rule.ids | 230,315,730,783,787,867,888,2109,24332,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcAFKI-y5WUkDoCUbOzYccKttCwLdFccWtSbZY-dsrSbVJtdDvx6bCepdouEBFJOcR6ezNj-rHzzDUKvikwAScGTGHKIWCkg0kzbCKgy7mC5zn028mSajU_Y51N-uoV4nwsTSPugZ3F1MY-r2ffArbycw7DniQ2_Tg6KQvAsp8Mb6KYbr0m2tklvk4MdRuC8_4cZ2FxmpmNfKdxz6gpfOHltFQpi_RuL0Z9g8zpncm0RGt1F3_rut9yT83i11DH8uqbs-M_23UN3OliK99vmHbRlq_topxv4DX7dqVO_eYCqaf3TXmBTz70-B2Dd1dXGNmQRYgg5nWEiwp5-2tjlO0wOcShi71WVG6wqg-kh_rhQcxeceL8681xYPPJkugYHmc0-Jap6iE5GH44PxlFXtCECTsQyKqlbdd0-BwRYYCUhYGhhbFJmOSuZAq4TYoQtcguZoUxljJSKgIOVVOUpS9NHaLuqK_sYYSESrgtiGBjF3PSgICPWISYQDrRaygbobe9Eedlqc8ietPZDOo9L73HZenyA3ns3X13oZbXDiXpxJruPL3OgVlGWk1KnrNSF5rpMrTGmSKjmBQwQ64NEdgilRR7uUbO_vftlH1DSjV7_S0ZVtl410tc5cVMm88bstgF21cM0c3tJSlyL2Ai9DRM2W1xABYXwLoD2_vvOF-jW-HhyJI8-Tb88Qbe9LS1d6SnaXi5W9plDYkv9PIy734kKOFM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgLUB5leRqJAyAlGztO7HArXZby6KoHKlVcLHvslIVustpkOfDrsZ2k2i0Sh0o5xc5jNGP7s_zNNwi9KnIOJAVPYhAQsZJDpJm2EVBl3MWEFj4b-WiWH56wz6fZ6Uapr0DaBz2Pq_NFXM1_BG7lcgHjgSc2Pj46KAqe5YKOl6YcX0c33JhNxMZGvUsQdjghy4ZzzMDoMnMd-2rhnldX-OLJGytREOzfWpD-BZyXeZMbC9H0Dvo-mNDxT37F61bH8OeSuuOVbLyLbvfwFO93XXbRNVvdQ7v9BNDg171K9Zv7qJrVv-05NvXC63QA1n19bWxDNiGGkNsZJiTsaaiNbd9hMsGhmL1XV26wqgymE_xxpRYuSPF-deY5sXjqSXUNDnKbQ2pU9QCdTD98OziM-uINEWSEt1FJ3err9jvAwQIrCQFDC2OTMhesZAoynRDDbSEs5IYylTNSKgIOXlIlUpamD9FOVVf2EcKcJ5kuiGFgFHPThIKcWIecgDvwaikbobeDI-Wy0-iQA3ntp3Rel97rsvP6CL33rr7o6OW1w416dSZ7B0gB1CrKBCl1ykpd6EyXqTXGFAnVWQEjxIZAkT1S6RCIe9X8f99-OQSVdKPYH82oytbrRvp6J27qZN6YvS7ILv4wzd2ekhLXwrfCb8uE7RYXVEEpvA-ix1d-8gW6eTyZyq-fZl-eoFvelI619BTttKu1feYAWaufh6H3FyQQOtM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+domestic+building+energy+consumption+dataset%3A+1D+timeseries+and+2D+Gramian+Angular+Fields+representation&rft.jtitle=Data+in+brief&rft.au=Abdullah+Alsalemi&rft.au=Abbes+Amira&rft.au=Hossein+Malekmohamadi&rft.au=Kegong+Diao&rft.date=2023-04-01&rft.pub=Elsevier&rft.issn=2352-3409&rft.eissn=2352-3409&rft.volume=47&rft.spage=108985&rft_id=info:doi/10.1016%2Fj.dib.2023.108985&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8c2ea2481fb34fb9b5bf3eddd902b59c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3409&client=summon |