Novel domestic building energy consumption dataset: 1D timeseries and 2D Gramian Angular Fields representation

This data article describes a dataset collected in 2022 in a domestic household in the UK. The data provides appliance-level power consumption data and ambient environmental conditions as a timeseries and as a collection of 2D images created using Gramian Angular Fields (GAF). The importance of the...

Full description

Saved in:
Bibliographic Details
Published inData in brief Vol. 47; p. 108985
Main Authors Alsalemi, Abdullah, Amira, Abbes, Malekmohamadi, Hossein, Diao, Kegong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.04.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This data article describes a dataset collected in 2022 in a domestic household in the UK. The data provides appliance-level power consumption data and ambient environmental conditions as a timeseries and as a collection of 2D images created using Gramian Angular Fields (GAF). The importance of the dataset lies in (a) providing the research community with a dataset that combines appliance-level data coupled with important contextual information for the surrounding environment; (b) presents energy data summaries as 2D images to help obtain novel insights using data visualization and Machine Learning (ML). The methodology involves installing smart plugs to a number of domestic appliances, environmental and occupancy sensors, and connecting the plugs and the sensors to a High-Performance Edge Computing (HPEC) system to privately store, pre-process, and post-process data. The heterogenous data include several parameters, including power consumption (W), voltage (V), current (A), ambient indoor temperature (°C), relative indoor humidity (RH%), and occupancy (binary). The dataset also includes outdoor weather conditions based on data from The Norwegian Meteorological Institute (MET Norway) including temperature (°C), outdoor humidity (RH%), barometric pressure (hPA), wind bearing (deg), and windspeed (m/s). This dataset is valuable for energy efficiency researchers, electrical engineers, and computer scientists to develop, validate, and deploy and computer vision and data-driven energy efficiency systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2352-3409
2352-3409
DOI:10.1016/j.dib.2023.108985