Nanostripe-Confined Catalyst Formation for Uniform Growth of Ultrathin Silicon Nanowires
Uniform growth of ultrathin silicon nanowire (SiNW) channels is the key to accomplishing reliable integration of various SiNW-based electronics, but remains a formidable challenge for catalytic synthesis, largely due to the lack of uniform size control of the leading metallic droplets. In this work,...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 13; no. 1; p. 121 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Uniform growth of ultrathin silicon nanowire (SiNW) channels is the key to accomplishing reliable integration of various SiNW-based electronics, but remains a formidable challenge for catalytic synthesis, largely due to the lack of uniform size control of the leading metallic droplets. In this work, we explored a nanostripe-confined approach to produce highly uniform indium (In) catalyst droplets that enabled the uniform growth of an orderly SiNW array via an in-plane solid-liquid-solid (IPSLS) guided growth directed by simple step edges. It was found that the size dispersion of the In droplets could be reduced substantially from Dcatpl = 20 ± 96 nm on a planar surface to only Dcatns = 88 ± 13 nm when the width of the In nanostripe was narrowed to Wstr= 100 nm, which could be qualitatively explained in a confined diffusion and nucleation model. The improved droplet uniformity was then translated into a more uniform growth of ultrathin SiNWs, with diameter of only Dnw= 28 ± 4 nm, which has not been reported for single-edge guided IPSLS growth. These results lay a solid basis for the construction of advanced SiNW-derived field-effect transistors, sensors and display applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano13010121 |