Neurobehavioral deficits of mice expressing a low level of G127V mutant frataxin

Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin (FXN). Most FRDA patients are homozygous for large expansions of GAA repeats in intron 1 of FXN, while some are compound heterozygotes with an expanded GAA tract in one a...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of disease Vol. 177; p. 105996
Main Authors Fil, Daniel, Conley, Robbie L., Zuberi, Aamir R., Lutz, Cathleen M., Gemelli, Terry, Napierala, Marek, Napierala, Jill S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin (FXN). Most FRDA patients are homozygous for large expansions of GAA repeats in intron 1 of FXN, while some are compound heterozygotes with an expanded GAA tract in one allele and a missense or nonsense mutation in the other. A missense mutation, changing a glycine to valine at position 130 (G130V), is prevalent among the clinical variants. We and others have demonstrated that levels of mature FXN protein in FRDA G130V samples are reduced below those detected in samples harboring homozygous repeat expansions. Little is known regarding expression and function of endogenous FXN-G130V protein due to lack of reagents and models that can distinguish the mutant FXN protein from the wild-type FXN produced from the GAA-expanded allele. We aimed to determine the effect of the G130V (murine G127V) mutation on Fxn expression and to define its multi-system impact in vivo. We used CRISPR/Cas9 to introduce the G127V missense mutation in the Fxn coding sequence and generated homozygous mice (FxnG127V/G127V). We also introduced the G127V mutation into a GAA repeat expansion FRDA mouse model (FxnGAA230/KO; KIKO) to generate a compound heterozygous strain (FxnG127V/GAA230). We performed neurobehavioral tests on cohorts of WT and Fxn mutant animals at three-month intervals for one year, and collected tissue samples to analyze molecular changes during that time. The endogenous Fxn G127V protein is detected at much lower levels in all tissues analyzed from FxnG127V/G127V mice compared to age and sex-matched WT mice without differences in Fxn transcript levels. FxnG127V/G127V mice are significantly smaller than WT counterparts, but perform similarly in most neurobehavioral tasks. RNA sequencing analysis revealed reduced expression of genes in oxidative phosphorylation and protein synthesis, underscoring the metabolic consequences in our mouse model expressing extremely low levels of Fxn. Results of these studies provide insight into the unique pathogenic mechanism of the FXN G130V mechanism and the tolerable limit of Fxn/FXN expression in vivo. •Extremely low Fxn levels are detected in CNS and heart tissues of Fxn G127V mice.•Fxn G127V mice are small and develop a hunched posture.•Endurance and activity are reduced in adult Fxn G127V mice.•Motor coordination is not affected in adult Fxn G127V mice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Authors contributed equally to this work.
Present address: Department of Neurology, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Conceptualization: A.Z., C.L., J.S.N. and M.N. Data curation and Investigation: D.F., A.Z., R.C., T.G. and J.S.N. Formal analysis: D.F., A.Z., R.C., C.L., T.G., J.S.N. and M.N. Funding acquisition: J.S.N. and M.N. Writing - original draft: J.S.N. and M.N. Writing - review and editing: D. F., R.C., A.Z., C.L., T.G., J.S.N., M.N.
Present address: Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
Authorship contributions
ISSN:0969-9961
1095-953X
DOI:10.1016/j.nbd.2023.105996