Resetting transcription factor control circuitry toward ground-state pluripotency in human

Current human pluripotent stem cells lack the transcription factor circuitry that governs the ground state of mouse embryonic stem cells (ESC). Here, we report that short-term expression of two components, NANOG and KLF2, is sufficient to ignite other elements of the network and reset the human plur...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 158; no. 6; pp. 1254 - 1269
Main Authors Takashima, Yasuhiro, Guo, Ge, Loos, Remco, Nichols, Jennifer, Ficz, Gabriella, Krueger, Felix, Oxley, David, Santos, Fatima, Clarke, James, Mansfield, William, Reik, Wolf, Bertone, Paul, Smith, Austin
Format Journal Article
LanguageEnglish
Published United States Cell Press 11.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Current human pluripotent stem cells lack the transcription factor circuitry that governs the ground state of mouse embryonic stem cells (ESC). Here, we report that short-term expression of two components, NANOG and KLF2, is sufficient to ignite other elements of the network and reset the human pluripotent state. Inhibition of ERK and protein kinase C sustains a transgene-independent rewired state. Reset cells self-renew continuously without ERK signaling, are phenotypically stable, and are karyotypically intact. They differentiate in vitro and form teratomas in vivo. Metabolism is reprogrammed with activation of mitochondrial respiration as in ESC. DNA methylation is dramatically reduced and transcriptome state is globally realigned across multiple cell lines. Depletion of ground-state transcription factors, TFCP2L1 or KLF4, has marginal impact on conventional human pluripotent stem cells but collapses the reset state. These findings demonstrate feasibility of installing and propagating functional control circuitry for ground-state pluripotency in human cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0092-8674
1097-4172
1097-4172
DOI:10.1016/j.cell.2014.08.029