Tumor suppressor Fbxw7 antagonizes WNT signaling by targeting β-catenin for degradation in pancreatic cancer

Pancreatic cancer is one of the deadliest solid malignancies associated with aberrant Wnt signaling activation. Fbxw7 mutations have been implicated in the development of pancreatic cancer, whereas the exact mechanism of this ubiquitin ligase as a tumor suppressor remains unclear in pancreatic carci...

Full description

Saved in:
Bibliographic Details
Published inTumor biology Vol. 37; no. 10; pp. 13893 - 13902
Main Authors Jiang, Jian-xin, Sun, Cheng-yi, Tian, She, Yu, Chao, Chen, Mei-yuan, Zhang, Hao
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pancreatic cancer is one of the deadliest solid malignancies associated with aberrant Wnt signaling activation. Fbxw7 mutations have been implicated in the development of pancreatic cancer, whereas the exact mechanism of this ubiquitin ligase as a tumor suppressor remains unclear in pancreatic carcinogenesis. Here, we describe that Fbxw7 is downregulated upon pancreatic cancer development. Depletion of Fbxw7 results in tumor suppression in pancreatic cancer cells, while Fbxw7 overexpression inhibits pancreatic cancer cell proliferation and invasion. Considering the negative correlation between Fbxw7 and β-catenin, we find that Fbxw7 antagonizes Wnt signaling through targeting β-catenin for its degradation. Moreover, the inhibitory effect of Fbxw7 on pancreatic cancer cell proliferation is mainly executed by the destruction of the Wnt/β-catenin signaling pathway. We also reveal that c-myc, a widely accepted target of Fbxw7, is also transcriptionally regulated by the Fbxw7/β-catenin axis in pancreatic cancer cells. Collectively, our results demonstrate that Fbxw7 is a novel regulator of Wnt/β-catenin signaling-dependent regulation of pancreatic cancer cell growth and invasion, and inactivation of Fbxw7 in pancreatic cancer tissues might be the reason for the aberrant activation of Wnt signaling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1010-4283
1423-0380
DOI:10.1007/s13277-016-5217-5