Inhibition of SARS-CoV-2 Infection in Vero Cells by Bovine Lactoferrin under Different Iron-Saturation States
Despite the rapid mass vaccination against COVID-19, the emergence of new SARS-CoV-2 variants of concern, such as omicron, is still a great distress, and new therapeutic options are needed. Bovine lactoferrin (bLf), a multifunctional iron-binding glycoprotein available in unsaturated (apo-bLf) and s...
Saved in:
Published in | Pharmaceuticals (Basel, Switzerland) Vol. 16; no. 10; p. 1352 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
25.09.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Despite the rapid mass vaccination against COVID-19, the emergence of new SARS-CoV-2 variants of concern, such as omicron, is still a great distress, and new therapeutic options are needed. Bovine lactoferrin (bLf), a multifunctional iron-binding glycoprotein available in unsaturated (apo-bLf) and saturated (holo-bLf) forms, has been shown to exert broad-spectrum antiviral activity against many viruses. In this study, we evaluated the efficacy of both forms of bLf at 1 mg/mL against infection of Vero cells by SARS-CoV-2. As assessed with antiviral assays, an equivalent significant reduction in virus infection by about 70% was observed when either form of bLf was present throughout the infection procedure with the SARS-CoV-2 ancestral or omicron strain. This inhibitory effect seemed to be concentrated during the early steps of virus infection, since a significant reduction in its efficiency by about 60% was observed when apo- or holo-bLf were incubated with the cells before or during virus addition, with no significant difference between the antiviral effects of the distinct iron-saturation states of the protein. However, an ultrastructural analysis of bLf treatment during the early steps of virus infection revealed that holo-bLf was somewhat more effective than apo-bLf in inhibiting virus entry. Together, these data suggest that bLf mainly acts in the early events of SARS-CoV-2 infection and is effective against the ancestral virus as well as its omicron variant. Considering that there are no effective treatments to COVID-19 with tolerable toxicity yet, bLf shows up as a promising candidate. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 1424-8247 1424-8247 |
DOI: | 10.3390/ph16101352 |