Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning

Triggered by the pioneering research on graphene, the family of two-dimensional layered materials (2DLMs) has been investigated for more than a decade, and appealing functionalities have been demonstrated. However, there are still challenges inhibiting high-quality growth and circuit-level integrati...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; p. 5953
Main Authors Chen, Xinyu, Xie, Yufeng, Sheng, Yaochen, Tang, Hongwei, Wang, Zeming, Wang, Yu, Wang, Yin, Liao, Fuyou, Ma, Jingyi, Guo, Xiaojiao, Tong, Ling, Liu, Hanqi, Liu, Hao, Wu, Tianxiang, Cao, Jiaxin, Bu, Sitong, Shen, Hui, Bai, Fuyu, Huang, Daming, Deng, Jianan, Riaud, Antoine, Xu, Zihan, Wu, Chenjian, Xing, Shiwei, Lu, Ye, Ma, Shunli, Sun, Zhengzong, Xue, Zhongyin, Di, Zengfeng, Gong, Xiao, Zhang, David Wei, Zhou, Peng, Wan, Jing, Bao, Wenzhong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.10.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Triggered by the pioneering research on graphene, the family of two-dimensional layered materials (2DLMs) has been investigated for more than a decade, and appealing functionalities have been demonstrated. However, there are still challenges inhibiting high-quality growth and circuit-level integration, and results from previous studies are still far from complying with industrial standards. Here, we overcome these challenges by utilizing machine-learning (ML) algorithms to evaluate key process parameters that impact the electrical characteristics of MoS 2 top-gated field-effect transistors (FETs). The wafer-scale fabrication processes are then guided by ML combined with grid searching to co-optimize device performance, including mobility, threshold voltage and subthreshold swing. A 62-level SPICE modeling was implemented for MoS 2 FETs and further used to construct functional digital, analog, and photodetection circuits. Finally, we present wafer-scale test FET arrays and a 4-bit full adder employing industry-standard design flows and processes. Taken together, these results experimentally validate the application potential of ML-assisted fabrication optimization for beyond-silicon electronic materials. Here, the authors demonstrate the application of machine learning to optimize the device fabrication process for wafer-scale 2D semiconductors, and eventually fabricate digital, analog, and optoelectrical circuits.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-26230-x