Photocatalytic cyclization of nitrogen-centered radicals with carbon nitride through promoting substrate/catalyst interaction

The use of metal-free carbon nitride and light to drive catalytic transformations constitutes a sustainable strategy for organic synthesis. At the moment, enhancing the intrinsic activity of CN catalysts by tuning the interfacial coupling between catalyst and substrate remains challenging. Herein, w...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; p. 4900
Main Authors Yang, Mingcheng, Lian, Ronghong, Zhang, Xirui, Wang, Chong, Cheng, Jiajia, Wang, Xinchen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.08.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The use of metal-free carbon nitride and light to drive catalytic transformations constitutes a sustainable strategy for organic synthesis. At the moment, enhancing the intrinsic activity of CN catalysts by tuning the interfacial coupling between catalyst and substrate remains challenging. Herein, we demonstrate that urea-derived carbon nitride catalysts with the abundant −NH 2 groups and the relative positive charged surface could effectively complex with the deprotonated anionic intermediate to improve the adsorption of organic reactants on the catalyst surface. The decreased oxidation potential and upshift in its highest occupied molecular orbital position make the electron abstraction kinetics by the catalyst more energetically favorable. The prepared catalyst is thus utilized for the photocatalytic cyclization of nitrogen-centered radicals for the synthesis of diverse pharmaceutical-related compounds (33 examples) with high activity and reusability, which shows competent performance to the homogeneous catalysts. Carbon nitride catalysts with positively charged surfaces and abundant −NH2 are found to be effective photocatalysts for dihydropyrazole synthesis. A surface-mediated mechanism where deprotonated intermediates interact with the surface is proposed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-32623-3