Ag9GaSe6: high-pressure-induced Ag migration causes thermoelectric performance irreproducibility and elimination of such instability
The argyrodite Ag 9 GaSe 6 is a newly recognized high-efficiency thermoelectric material with an ultralow thermal conductivity; however, liquid-like Ag atoms are believed to cause poor stability and performance irreproducibility, which was evidenced even after the 1 st measurement run. Herein, we de...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 2966 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.05.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The argyrodite Ag
9
GaSe
6
is a newly recognized high-efficiency thermoelectric material with an ultralow thermal conductivity; however, liquid-like Ag atoms are believed to cause poor stability and performance irreproducibility, which was evidenced even after the 1
st
measurement run. Herein, we demonstrate the abovementioned instability and irreproducibility are caused by standard thermoelectric sample hot-pressing procedure, during which high pressure promotes the 3-fold-coordinated Ag atoms migrate to 4-fold-coordinated sites with higher-chemical potentials. Such instability can be eliminated by a simple annealing treatment, driving the metastable Ag atoms back to the original sites with lower-chemical potentials as revealed by the valence band X-ray photoelectron chemical potential spectra and single crystal X-ray diffraction data. Furthermore, the hot-pressed-annealed samples exhibit great stability and TE property repeatability. Such a stability and repeatability has never been reported before. This discovery will give liquid-like materials great application potential.
The Ag
9
GaSe
6
is a high-efficient thermoelectric material yet suffers instability. Here, the authors demonstrate the instability is caused by the pressure-induced liquid-like Ag migration, which can be eliminated by a simple annealing treatment. |
---|---|
AbstractList | The argyrodite Ag
9
GaSe
6
is a newly recognized high-efficiency thermoelectric material with an ultralow thermal conductivity; however, liquid-like Ag atoms are believed to cause poor stability and performance irreproducibility, which was evidenced even after the 1
st
measurement run. Herein, we demonstrate the abovementioned instability and irreproducibility are caused by standard thermoelectric sample hot-pressing procedure, during which high pressure promotes the 3-fold-coordinated Ag atoms migrate to 4-fold-coordinated sites with higher-chemical potentials. Such instability can be eliminated by a simple annealing treatment, driving the metastable Ag atoms back to the original sites with lower-chemical potentials as revealed by the valence band X-ray photoelectron chemical potential spectra and single crystal X-ray diffraction data. Furthermore, the hot-pressed-annealed samples exhibit great stability and TE property repeatability. Such a stability and repeatability has never been reported before. This discovery will give liquid-like materials great application potential.
The Ag
9
GaSe
6
is a high-efficient thermoelectric material yet suffers instability. Here, the authors demonstrate the instability is caused by the pressure-induced liquid-like Ag migration, which can be eliminated by a simple annealing treatment. The argyrodite Ag 9 GaSe 6 is a newly recognized high-efficiency thermoelectric material with an ultralow thermal conductivity; however, liquid-like Ag atoms are believed to cause poor stability and performance irreproducibility, which was evidenced even after the 1 st measurement run. Herein, we demonstrate the abovementioned instability and irreproducibility are caused by standard thermoelectric sample hot-pressing procedure, during which high pressure promotes the 3-fold-coordinated Ag atoms migrate to 4-fold-coordinated sites with higher-chemical potentials. Such instability can be eliminated by a simple annealing treatment, driving the metastable Ag atoms back to the original sites with lower-chemical potentials as revealed by the valence band X-ray photoelectron chemical potential spectra and single crystal X-ray diffraction data. Furthermore, the hot-pressed-annealed samples exhibit great stability and TE property repeatability. Such a stability and repeatability has never been reported before. This discovery will give liquid-like materials great application potential. The argyrodite Ag9GaSe6 is a newly recognized high-efficiency thermoelectric material with an ultralow thermal conductivity; however, liquid-like Ag atoms are believed to cause poor stability and performance irreproducibility, which was evidenced even after the 1st measurement run. Herein, we demonstrate the abovementioned instability and irreproducibility are caused by standard thermoelectric sample hot-pressing procedure, during which high pressure promotes the 3-fold-coordinated Ag atoms migrate to 4-fold-coordinated sites with higher-chemical potentials. Such instability can be eliminated by a simple annealing treatment, driving the metastable Ag atoms back to the original sites with lower-chemical potentials as revealed by the valence band X-ray photoelectron chemical potential spectra and single crystal X-ray diffraction data. Furthermore, the hot-pressed-annealed samples exhibit great stability and TE property repeatability. Such a stability and repeatability has never been reported before. This discovery will give liquid-like materials great application potential.The argyrodite Ag9GaSe6 is a newly recognized high-efficiency thermoelectric material with an ultralow thermal conductivity; however, liquid-like Ag atoms are believed to cause poor stability and performance irreproducibility, which was evidenced even after the 1st measurement run. Herein, we demonstrate the abovementioned instability and irreproducibility are caused by standard thermoelectric sample hot-pressing procedure, during which high pressure promotes the 3-fold-coordinated Ag atoms migrate to 4-fold-coordinated sites with higher-chemical potentials. Such instability can be eliminated by a simple annealing treatment, driving the metastable Ag atoms back to the original sites with lower-chemical potentials as revealed by the valence band X-ray photoelectron chemical potential spectra and single crystal X-ray diffraction data. Furthermore, the hot-pressed-annealed samples exhibit great stability and TE property repeatability. Such a stability and repeatability has never been reported before. This discovery will give liquid-like materials great application potential. The argyrodite Ag9GaSe6 is a newly recognized high-efficiency thermoelectric material with an ultralow thermal conductivity; however, liquid-like Ag atoms are believed to cause poor stability and performance irreproducibility, which was evidenced even after the 1st measurement run. Herein, we demonstrate the abovementioned instability and irreproducibility are caused by standard thermoelectric sample hot-pressing procedure, during which high pressure promotes the 3-fold-coordinated Ag atoms migrate to 4-fold-coordinated sites with higher-chemical potentials. Such instability can be eliminated by a simple annealing treatment, driving the metastable Ag atoms back to the original sites with lower-chemical potentials as revealed by the valence band X-ray photoelectron chemical potential spectra and single crystal X-ray diffraction data. Furthermore, the hot-pressed-annealed samples exhibit great stability and TE property repeatability. Such a stability and repeatability has never been reported before. This discovery will give liquid-like materials great application potential.The Ag9GaSe6 is a high-efficient thermoelectric material yet suffers instability. Here, the authors demonstrate the instability is caused by the pressure-induced liquid-like Ag migration, which can be eliminated by a simple annealing treatment. The Ag9GaSe6 is a high-efficient thermoelectric material yet suffers instability. Here, the authors demonstrate the instability is caused by the pressure-induced liquid-like Ag migration, which can be eliminated by a simple annealing treatment. |
ArticleNumber | 2966 |
Author | Wu, Li-Ming Liu, Jing-Yuan Chen, Ling |
Author_xml | – sequence: 1 givenname: Jing-Yuan orcidid: 0000-0001-8259-9456 surname: Liu fullname: Liu, Jing-Yuan organization: Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University – sequence: 2 givenname: Ling orcidid: 0000-0002-3693-4193 surname: Chen fullname: Chen, Ling email: chenl@bnu.edu.cn organization: Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University – sequence: 3 givenname: Li-Ming orcidid: 0000-0001-8390-2138 surname: Wu fullname: Wu, Li-Ming email: wlm@bnu.edu.cn organization: Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University |
BookMark | eNp9kk9rFTEUxQep2Fr7BVwF3LgZzb9JMi6ER9FaKLhQ1yGTuZnJYyZ5JjNC935w0zcVbRcNhITknN9NLudldRJigKp6TfA7gpl6nznhQtaY0pphSUQtn1VnFHNSE0nZyX_70-oi5z0ug7VEcf6iOmWNoJxQflb93g3tlfkG4gMa_TDWhwQ5rwlqH_rVQo92A5r9kMziY0DWrBkyWkZIc4QJ7JK8RQdILqbZBAvIpwSHFIvXd37yyy0yoUcw-dmHjREdyqsdkQ95MZvmVfXcmSnDxf16Xv34_On75Zf65uvV9eXuprYNkUvdWuokdYq2tlekaQwRfceoFbJXrsNKdKKjwImR2FHGDMVtZx3DVnBDWonZeXW9cfto9vqQ_GzSrY7G6-NBTIM2afF2At04B2X2TsjSZ8qN6ihhlndMOXDWFtbHjXVYuxl6C2FJZnoAfXgT_KiH-Eu3hFPekgJ4ew9I8ecKedGzzxamyQSIa9a0VKayaRtapG8eSfdxTaG06k6FG8KUEkWlNpVNMecETlu_HHte6vtJE6zvkqO35OiSHH1MjpbFSh9Z__7jSRPbTLmIwwDp36uecP0BxzHZmQ |
CitedBy_id | crossref_primary_10_1088_1674_1056_acb765 crossref_primary_10_1016_j_mtcomm_2025_111995 crossref_primary_10_1002_anie_202415318 crossref_primary_10_1016_j_actamat_2024_120699 crossref_primary_10_1039_D4YA00057A crossref_primary_10_1002_adma_202302969 crossref_primary_10_1007_s11669_024_01088_w crossref_primary_10_1002_advs_202204624 crossref_primary_10_1039_D3TA01291C crossref_primary_10_1021_acsaem_2c03958 crossref_primary_10_1021_jacsau_2c00353 crossref_primary_10_1002_ange_202415318 crossref_primary_10_1007_s12598_023_02302_3 crossref_primary_10_1021_acsami_4c14311 crossref_primary_10_1002_smll_202305048 crossref_primary_10_1007_s10854_023_10916_7 crossref_primary_10_1039_D3TA01476B |
Cites_doi | 10.1039/C7CC05935C 10.1021/acs.accounts.7b00480 10.1039/C6TC05068A 10.1002/aenm.201301581 10.1039/c3ta11903c 10.1021/ja5056092 10.1038/s41563-021-01053-9 10.1038/nmat2090 10.1016/j.mattod.2021.01.007 10.1021/acsami.8b19819 10.1021/acsaem.9b02330 10.1039/C6CP04791B 10.1021/jacs.0c00062 10.1021/acs.chemmater.7b04436 10.1002/anie.201605015 10.1016/j.joule.2017.09.006 10.1016/0022-4596(81)90198-5 10.1039/c1jm13888j 10.1038/s41467-018-05248-8 10.1002/advs.201901598 10.1038/nmat3273 10.1039/C7EE01193H 10.1038/nchem.1754 10.1016/j.mtphys.2018.05.001 10.1021/ja510433j 10.1038/s41563-017-0004-2 10.1016/j.cej.2019.05.179 10.1002/pssr.200701302 10.1002/adfm.201705117 10.1002/aenm.201800030 10.1038/nchem.724 10.1039/D0EE02072A 10.1039/C6TC00810K 10.1143/JJAP.48.011603 10.1039/C4TA04056B 10.1039/C4EE02428A 10.1002/advs.201600196 10.1063/1.4945033 10.1016/S0039-6028(98)00436-1 10.1002/adma.201400515 10.1007/s11664-013-2506-2 10.1016/j.ssi.2014.03.025 10.1002/adma.202003730 10.1039/C7TA08726H 10.1002/adfm.201903867 10.1002/adfm.201908315 10.1016/j.mtphys.2018.09.001 10.1002/adma.201905703 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-30716-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_5ffe5ffdf6714624a8b213c4b38fefcc PMC9142491 10_1038_s41467_022_30716_7 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22193043; 21975032 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 22193043; 21975032 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-9c2f72f829cd8155a16db32c67d8fb086b6b2e41a70f233a209bcf30c64a19703 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:05:10 EDT 2025 Thu Aug 21 18:12:04 EDT 2025 Fri Jul 11 14:17:13 EDT 2025 Wed Aug 13 05:28:09 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Tue Jul 01 00:58:13 EDT 2025 Fri Feb 21 02:38:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-9c2f72f829cd8155a16db32c67d8fb086b6b2e41a70f233a209bcf30c64a19703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8259-9456 0000-0001-8390-2138 0000-0002-3693-4193 |
OpenAccessLink | https://www.nature.com/articles/s41467-022-30716-7 |
PMID | 35624124 |
PQID | 2670513886 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5ffe5ffdf6714624a8b213c4b38fefcc pubmedcentral_primary_oai_pubmedcentral_nih_gov_9142491 proquest_miscellaneous_2671275952 proquest_journals_2670513886 crossref_citationtrail_10_1038_s41467_022_30716_7 crossref_primary_10_1038_s41467_022_30716_7 springer_journals_10_1038_s41467_022_30716_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-27 |
PublicationDateYYYYMMDD | 2022-05-27 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Lin (CR14) 2018; 6 Wu (CR34) 2016; 18 Jiang (CR15) 2017; 53 Han (CR33) 2014; 136 Yin, Liu, Chen, Wu (CR6) 2018; 51 Zhao, Qiu, Shi, Chen (CR5) 2019; 30 Ma, Li, Chen, Wu (CR10) 2020; 142 Jiang (CR26) 2018; 5 Pei, Heinz, Snyder (CR38) 2011; 21 Zhang (CR28) 2016; 119 CR48 Rettie (CR8) 2021; 20 He (CR9) 2014; 26 Dennler (CR41) 2014; 4 Lin, Li, Pei (CR12) 2021; 48 Bhattacharya (CR35) 2013; 1 Brown, Day, Caillat, Snyder (CR40) 2013; 42 Jiang (CR23) 2017; 5 Charoenphakdee (CR21) 2008; 2 Lin (CR16) 2017; 1 Shen (CR18) 2019; 11 Chaturvedi, Rodriguez, Jirsak, Hrbek (CR49) 1998; 412/413 Li (CR17) 2018; 8 Snyder, Toberer (CR1) 2008; 7 Yang (CR45) 2020; 32 Kim, Debessai, Yoo (CR46) 2010; 2 Li (CR7) 2008; 17 CR50 Mao (CR44) 2020; 7 Qi (CR27) 2019; 374 Olvera (CR39) 2017; 10 Li (CR19) 2016; 4 Yang (CR37) 2017; 5 Miao (CR47) 2013; 5 Qiu (CR29) 2014; 7 Deloume, Faure (CR13) 1981; 36 Lin (CR25) 2020; 3 Charoenphakdee (CR22) 2009; 48 Liu, Yang, Chen, Zou (CR4) 2020; 32 Lin (CR11) 2016; 55 Liu (CR2) 2012; 11 Zhang (CR3) 2020; 13 Zhang (CR31) 2018; 28 Bhattacharya (CR36) 2014; 2 Qiu (CR42) 2018; 9 Li (CR20) 2016; 3 Long, Powell, Vaqueiro, Hull (CR30) 2018; 30 Mao (CR43) 2019; 30 Hong (CR32) 2014; 261 Weldert (CR24) 2014; 136 X Zhang (30716_CR28) 2016; 119 DR Brown (30716_CR40) 2013; 42 30716_CR50 JP Deloume (30716_CR13) 1981; 36 C Han (30716_CR33) 2014; 136 M Miao (30716_CR47) 2013; 5 D Yang (30716_CR37) 2017; 5 L Li (30716_CR19) 2016; 4 B Jiang (30716_CR26) 2018; 5 SOJ Long (30716_CR30) 2018; 30 A Charoenphakdee (30716_CR22) 2009; 48 S Lin (30716_CR14) 2018; 6 S Bhattacharya (30716_CR35) 2013; 1 G Snyder (30716_CR1) 2008; 7 W Li (30716_CR17) 2018; 8 H Liu (30716_CR2) 2012; 11 H Lin (30716_CR11) 2016; 55 S Bhattacharya (30716_CR36) 2014; 2 AJ Hong (30716_CR32) 2014; 261 S Lin (30716_CR16) 2017; 1 Z Zhang (30716_CR3) 2020; 13 T Mao (30716_CR44) 2020; 7 K Zhao (30716_CR5) 2019; 30 D Yang (30716_CR45) 2020; 32 30716_CR48 AJE Rettie (30716_CR8) 2021; 20 S Chaturvedi (30716_CR49) 1998; 412/413 S Lin (30716_CR25) 2020; 3 A Zhang (30716_CR31) 2018; 28 M Kim (30716_CR46) 2010; 2 AA Olvera (30716_CR39) 2017; 10 N Ma (30716_CR10) 2020; 142 W Liu (30716_CR4) 2020; 32 W Li (30716_CR20) 2016; 3 B Jiang (30716_CR23) 2017; 5 X Yin (30716_CR6) 2018; 51 T Mao (30716_CR43) 2019; 30 G Dennler (30716_CR41) 2014; 4 S Lin (30716_CR12) 2021; 48 KS Weldert (30716_CR24) 2014; 136 A Charoenphakdee (30716_CR21) 2008; 2 D Wu (30716_CR34) 2016; 18 Y He (30716_CR9) 2014; 26 X Qi (30716_CR27) 2019; 374 B Jiang (30716_CR15) 2017; 53 X Shen (30716_CR18) 2019; 11 Y Pei (30716_CR38) 2011; 21 P Qiu (30716_CR42) 2018; 9 P Qiu (30716_CR29) 2014; 7 B Li (30716_CR7) 2008; 17 |
References_xml | – volume: 53 start-page: 11658 year: 2017 end-page: 11661 ident: CR15 article-title: An argyrodite-type Ag GaSe liquid-like material with ultralow thermal conductivity and high thermoelectric performance publication-title: Chem. Commun. doi: 10.1039/C7CC05935C – volume: 51 start-page: 240 year: 2018 end-page: 247 ident: CR6 article-title: High thermoelectric performance of In Se -based materials and the influencing factors publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00480 – volume: 5 start-page: 943 year: 2017 end-page: 952 ident: CR23 article-title: Cu GeSe -based thermoelectric materials with an argyrodite structure publication-title: J. Mater. Chem. C. doi: 10.1039/C6TC05068A – volume: 4 start-page: 1301581 year: 2014 ident: CR41 article-title: Are binary copper sulfides/selenides really new and promising thermoelectric materials? publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301581 – volume: 1 start-page: 11289 year: 2013 end-page: 11294 ident: CR35 article-title: CuCrSe a high performance phonon glass and electron crystal thermoelectric material publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11903c – volume: 136 start-page: 12035 year: 2014 end-page: 12040 ident: CR24 article-title: Thermoelectric transport in Cu PSe with high copper ionic mobility publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5056092 – volume: 20 start-page: 1683 year: 2021 end-page: 1688 ident: CR8 article-title: A two-dimensional type I superionic conductor publication-title: Nat. Mater. doi: 10.1038/s41563-021-01053-9 – volume: 7 start-page: 105 year: 2008 end-page: 114 ident: CR1 article-title: Complex thermoelectric materials publication-title: Nat. Mater. doi: 10.1038/nmat2090 – volume: 48 start-page: 198 year: 2021 end-page: 213 ident: CR12 article-title: Thermally insulative thermoelectric argyrodites publication-title: Mater. Today doi: 10.1016/j.mattod.2021.01.007 – volume: 11 start-page: 2168 year: 2019 end-page: 2176 ident: CR18 article-title: High-temperature structural and thermoelectric study of argyrodite Ag GeSe publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19819 – volume: 3 start-page: 1892 year: 2020 end-page: 1898 ident: CR25 article-title: Thermoelectric p-type Ag GaTe with an intrinsically low lattice thermal conductivity publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b02330 – volume: 18 start-page: 23872 year: 2016 end-page: 23878 ident: CR34 article-title: Revisiting AgCrSe as a promising thermoelectric material publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP04791B – volume: 142 start-page: 5293 year: 2020 end-page: 5303 ident: CR10 article-title: -CsCu Se : discovery of a low-cost bulk selenide with high thermoelectric performance publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00062 – volume: 30 start-page: 456 year: 2018 end-page: 464 ident: CR30 article-title: High thermoelectric performance of bornite through control of the Cu (II) content and vacancy concentration publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b04436 – volume: 55 start-page: 11431 year: 2016 end-page: 11436 ident: CR11 article-title: Concerted rattling in CsAg Te leading to ultralow thermal conductivity and high thermoelectric performance publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605015 – volume: 1 start-page: 816 year: 2017 end-page: 830 ident: CR16 article-title: Thermoelectric performance of Ag GaSe enabled by low cutoff frequency of acoustic phonons publication-title: Joule doi: 10.1016/j.joule.2017.09.006 – volume: 36 start-page: 112 year: 1981 end-page: 117 ident: CR13 article-title: A new compound, Ag GaSe structure study of the alpha-phase publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(81)90198-5 – ident: CR50 – volume: 21 start-page: 18256 year: 2011 end-page: 18260 ident: CR38 article-title: Alloying to increase the band gap for improving thermoelectric properties of Ag Te publication-title: J. Mater. Chem. doi: 10.1039/c1jm13888j – volume: 9 year: 2018 ident: CR42 article-title: Suppression of atom motion and metal deposition in mixed ionic electronic conductors publication-title: Nat. Commun. doi: 10.1038/s41467-018-05248-8 – volume: 7 start-page: 1901598 year: 2020 ident: CR44 article-title: Decoupling thermoelectric performance and stability in liquid-like thermoelectric materials publication-title: Adv. Sci. doi: 10.1002/advs.201901598 – volume: 11 start-page: 422 year: 2012 end-page: 425 ident: CR2 article-title: Copper ion liquid-like thermoelectrics publication-title: Nat. Mater. doi: 10.1038/nmat3273 – volume: 10 start-page: 1668 year: 2017 end-page: 1676 ident: CR39 article-title: Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu Se publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01193H – volume: 5 start-page: 846 year: 2013 end-page: 852 ident: CR47 article-title: Caesium in high oxidation states and as a -block element publication-title: Nat. Chem. doi: 10.1038/nchem.1754 – volume: 5 start-page: 20 year: 2018 end-page: 28 ident: CR26 article-title: Entropy optimized phase transitions and improved thermoelectric performance in n-type liquid-like Ag GaSe materials publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2018.05.001 – volume: 136 start-page: 17626 year: 2014 end-page: 17633 ident: CR33 article-title: Ambient scalable synthesis of surfactant-free thermoelectric CuAgSe nanoparticles with reversible metallic- - conductivity transition publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510433j – volume: 17 start-page: 226 year: 2008 end-page: 230 ident: CR7 article-title: Liquid-like thermal conduction in intercalated layered crystalline solids publication-title: Nat. Mater. doi: 10.1038/s41563-017-0004-2 – volume: 374 start-page: 494 year: 2019 end-page: 501 ident: CR27 article-title: Thermal stability of Ag GaSe and its potential as a functionally graded thermoelectric material publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.179 – volume: 2 start-page: 65 year: 2008 end-page: 67 ident: CR21 article-title: Reinvestigation of the thermoelectric properties of Ag GeTe publication-title: Phys. Stat. Sol. (RRL) doi: 10.1002/pssr.200701302 – volume: 28 start-page: 1705117 year: 2018 ident: CR31 article-title: Twin engineering in solution-synthesized nonstoichiometric Cu FeS icosahedral nanoparticles for enhanced thermoelectric performance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705117 – volume: 8 start-page: 1800030 year: 2018 ident: CR17 article-title: Crystal structure induced ultralow lattice thermal conductivity in thermoelectric Ag AlSe publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800030 – volume: 2 start-page: 784 year: 2010 end-page: 788 ident: CR46 article-title: Two- and three-dimensional extended solids and metallization of compressed XeF publication-title: Nat. Chem. doi: 10.1038/nchem.724 – volume: 13 start-page: 3307 year: 2020 end-page: 3329 ident: CR3 article-title: Cu Se-based liquid-like thermoelectric materials: looking back and stepping forward publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02072A – volume: 4 start-page: 5806 year: 2016 end-page: 5813 ident: CR19 article-title: High thermoelectric performance of superionic argyrodite compound Ag SnSe publication-title: J. Mater. Chem. C. doi: 10.1039/C6TC00810K – volume: 48 start-page: 011603 year: 2009 ident: CR22 article-title: Ag SiTe : a new thermoelectric material with low thermal conductivity publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.48.011603 – volume: 2 start-page: 17122 year: 2014 end-page: 17129 ident: CR36 article-title: High thermoelectric performance of (AgCrSe ) (CuCrSe ) nano-composites having all-scale natural hierarchical architectures publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04056B – volume: 7 start-page: 4000 year: 2014 end-page: 4006 ident: CR29 article-title: Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivity publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02428A – volume: 3 start-page: 1600196 year: 2016 ident: CR20 article-title: Low sound velocity contributing to the high thermoelectric performance of Ag SnSe publication-title: Adv. Sci. doi: 10.1002/advs.201600196 – volume: 119 start-page: 135101 year: 2016 ident: CR28 article-title: Thermoelectric properties of n-type Nb-doped Ag SnSe publication-title: J. Appl. Phys. doi: 10.1063/1.4945033 – volume: 412/413 start-page: 273 year: 1998 end-page: 286 ident: CR49 article-title: Ag “promoted” sulfidation of metal and oxide surfaces: a photoemission study of the interaction of sulfur with Ag/Rh (111) and Ag/ZnO publication-title: Surf. Sci. doi: 10.1016/S0039-6028(98)00436-1 – volume: 26 start-page: 3974 year: 2014 end-page: 3978 ident: CR9 article-title: High thermoelectric performance in non-toxic earth-abundant copper sulfide publication-title: Adv. Mater. doi: 10.1002/adma.201400515 – ident: CR48 – volume: 42 start-page: 2014 year: 2013 end-page: 2019 ident: CR40 article-title: Chemical stability of (Ag, Cu) Se: a historical overview publication-title: J. Electron. Mater. doi: 10.1007/s11664-013-2506-2 – volume: 261 start-page: 21 year: 2014 end-page: 25 ident: CR32 article-title: Anomalous transport and thermoelectric performances of CuAgSe compounds publication-title: Solid State Ion. doi: 10.1016/j.ssi.2014.03.025 – volume: 32 start-page: 2003730 year: 2020 ident: CR45 article-title: Blocking ion migration stabilizes the high thermoelectric performance in Cu Se composites publication-title: Adv. Mater. doi: 10.1002/adma.202003730 – volume: 5 start-page: 23243 year: 2017 end-page: 23251 ident: CR37 article-title: Facile room temperature solventless synthesis of high thermoelectric performance Ag Se via a dissociative adsorption reaction publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08726H – volume: 30 start-page: 1903867 year: 2019 ident: CR5 article-title: Recent advances in liquid‐like thermoelectric materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903867 – volume: 30 start-page: 1908315 year: 2019 ident: CR43 article-title: Enhanced thermoelectric performance and service stability of Cu Se via tailoring chemical compositions at multiple atomic positions publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908315 – volume: 6 start-page: 60 year: 2018 end-page: 67 ident: CR14 article-title: Thermoelectric properties of Ag GaS with ultralow lattice thermal conductivity publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2018.09.001 – volume: 32 start-page: 1905703 year: 2020 ident: CR4 article-title: Promising and eco-friendly Cu X-based thermoelectric materials: progress and applications publication-title: Adv. Mater. doi: 10.1002/adma.201905703 – volume: 36 start-page: 112 year: 1981 ident: 30716_CR13 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(81)90198-5 – volume: 51 start-page: 240 year: 2018 ident: 30716_CR6 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00480 – volume: 10 start-page: 1668 year: 2017 ident: 30716_CR39 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01193H – volume: 30 start-page: 456 year: 2018 ident: 30716_CR30 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b04436 – volume: 1 start-page: 816 year: 2017 ident: 30716_CR16 publication-title: Joule doi: 10.1016/j.joule.2017.09.006 – volume: 9 year: 2018 ident: 30716_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05248-8 – volume: 2 start-page: 784 year: 2010 ident: 30716_CR46 publication-title: Nat. Chem. doi: 10.1038/nchem.724 – volume: 2 start-page: 17122 year: 2014 ident: 30716_CR36 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04056B – volume: 5 start-page: 846 year: 2013 ident: 30716_CR47 publication-title: Nat. Chem. doi: 10.1038/nchem.1754 – volume: 261 start-page: 21 year: 2014 ident: 30716_CR32 publication-title: Solid State Ion. doi: 10.1016/j.ssi.2014.03.025 – volume: 6 start-page: 60 year: 2018 ident: 30716_CR14 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2018.09.001 – volume: 32 start-page: 1905703 year: 2020 ident: 30716_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201905703 – volume: 7 start-page: 1901598 year: 2020 ident: 30716_CR44 publication-title: Adv. Sci. doi: 10.1002/advs.201901598 – volume: 32 start-page: 2003730 year: 2020 ident: 30716_CR45 publication-title: Adv. Mater. doi: 10.1002/adma.202003730 – volume: 48 start-page: 198 year: 2021 ident: 30716_CR12 publication-title: Mater. Today doi: 10.1016/j.mattod.2021.01.007 – volume: 1 start-page: 11289 year: 2013 ident: 30716_CR35 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11903c – ident: 30716_CR48 – volume: 26 start-page: 3974 year: 2014 ident: 30716_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.201400515 – volume: 7 start-page: 105 year: 2008 ident: 30716_CR1 publication-title: Nat. Mater. doi: 10.1038/nmat2090 – volume: 3 start-page: 1600196 year: 2016 ident: 30716_CR20 publication-title: Adv. Sci. doi: 10.1002/advs.201600196 – volume: 5 start-page: 23243 year: 2017 ident: 30716_CR37 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08726H – volume: 11 start-page: 422 year: 2012 ident: 30716_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat3273 – volume: 136 start-page: 12035 year: 2014 ident: 30716_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5056092 – volume: 48 start-page: 011603 year: 2009 ident: 30716_CR22 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.48.011603 – volume: 17 start-page: 226 year: 2008 ident: 30716_CR7 publication-title: Nat. Mater. doi: 10.1038/s41563-017-0004-2 – volume: 42 start-page: 2014 year: 2013 ident: 30716_CR40 publication-title: J. Electron. Mater. doi: 10.1007/s11664-013-2506-2 – volume: 142 start-page: 5293 year: 2020 ident: 30716_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00062 – volume: 30 start-page: 1908315 year: 2019 ident: 30716_CR43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908315 – volume: 2 start-page: 65 year: 2008 ident: 30716_CR21 publication-title: Phys. Stat. Sol. (RRL) doi: 10.1002/pssr.200701302 – volume: 412/413 start-page: 273 year: 1998 ident: 30716_CR49 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(98)00436-1 – volume: 28 start-page: 1705117 year: 2018 ident: 30716_CR31 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705117 – volume: 30 start-page: 1903867 year: 2019 ident: 30716_CR5 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903867 – volume: 119 start-page: 135101 year: 2016 ident: 30716_CR28 publication-title: J. Appl. Phys. doi: 10.1063/1.4945033 – volume: 3 start-page: 1892 year: 2020 ident: 30716_CR25 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b02330 – volume: 20 start-page: 1683 year: 2021 ident: 30716_CR8 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01053-9 – volume: 55 start-page: 11431 year: 2016 ident: 30716_CR11 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605015 – ident: 30716_CR50 – volume: 136 start-page: 17626 year: 2014 ident: 30716_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510433j – volume: 11 start-page: 2168 year: 2019 ident: 30716_CR18 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19819 – volume: 5 start-page: 20 year: 2018 ident: 30716_CR26 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2018.05.001 – volume: 374 start-page: 494 year: 2019 ident: 30716_CR27 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.179 – volume: 4 start-page: 5806 year: 2016 ident: 30716_CR19 publication-title: J. Mater. Chem. C. doi: 10.1039/C6TC00810K – volume: 7 start-page: 4000 year: 2014 ident: 30716_CR29 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02428A – volume: 18 start-page: 23872 year: 2016 ident: 30716_CR34 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP04791B – volume: 4 start-page: 1301581 year: 2014 ident: 30716_CR41 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301581 – volume: 8 start-page: 1800030 year: 2018 ident: 30716_CR17 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800030 – volume: 13 start-page: 3307 year: 2020 ident: 30716_CR3 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02072A – volume: 53 start-page: 11658 year: 2017 ident: 30716_CR15 publication-title: Chem. Commun. doi: 10.1039/C7CC05935C – volume: 5 start-page: 943 year: 2017 ident: 30716_CR23 publication-title: J. Mater. Chem. C. doi: 10.1039/C6TC05068A – volume: 21 start-page: 18256 year: 2011 ident: 30716_CR38 publication-title: J. Mater. Chem. doi: 10.1039/c1jm13888j |
SSID | ssj0000391844 |
Score | 2.5015824 |
Snippet | The argyrodite Ag
9
GaSe
6
is a newly recognized high-efficiency thermoelectric material with an ultralow thermal conductivity; however, liquid-like Ag atoms... The argyrodite Ag9GaSe6 is a newly recognized high-efficiency thermoelectric material with an ultralow thermal conductivity; however, liquid-like Ag atoms are... The Ag9GaSe6 is a high-efficient thermoelectric material yet suffers instability. Here, the authors demonstrate the instability is caused by the... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2966 |
SubjectTerms | 639/301 639/301/299/2736 Annealing Chemical potential Heat conductivity High pressure Humanities and Social Sciences Instability multidisciplinary Photoelectrons Pressure Reproducibility Science Science (multidisciplinary) Single crystals Stability Thermal conductivity Thermoelectric materials Thermoelectricity Valence band X-ray diffraction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiKcILchI3CBqbCd-9LYgSoUEF6jUm2U79jZSm602m0Pv_PCO7ey2qQRcOOSSePPwNy-vZ75B6H1jLMiudKVyAAN4fNA58NKlAWfKCHcV9_F_yO8_-Mlp_e2sObvT6ivmhGV64Dxxh00IHo42cAFKTWsjLSXM1ZbJ4INz0fqCz7uzmEo2mClYutRTlUzF5OFQJ5uQktfBrfJSzDxRIuyfRZn3cyTvbZQm_3P8BD2eAke8yC_8FD3w_TP0MLeSvH6Ofi-W6qv56fkRjgzEZcpvHde-hDU3oNfixRJfdsuMN3ZmHPyAY_B3ucqdcDqHr26LCHC3jnSXkQ02p89eY9O32F-kJmDpHquAh9Gd4y4GmHnMC3R6_OXX55Ny6rBQuoaIDQBEg6BBUuVaCZGFIby1jDouWhkARG65pb4mRlSBMmZgpq0LrHK8NkSBsXiJ9vpV718hHItkmwDRr2C2pqY1VpoGYk_JWBDEqQKR7WxrN9GPxy4YFzptgzOpM0IaENIJIS0K9GH3m6tMvvHX0Z8iiLuRkTg7nQBx0pM46X-JU4EOtiKgJ20eNOUCbBeTkhfo3e4y6GHcXDG9X41pTOTKVw0tkJiJzuyF5lf67jwxeqtYb6hIgT5uhez24X_-4Nf_44P30SMalaKKpYkHaG-zHv0biLM29m1SqRs9gycM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgCIkL4lMECjISN4ia2IntcEELolRIcIFKe7Nsx95GapNlszn0zg9nxsnuKpXoIZfETpy8Gc_EnnlDyLvSWJBd5dLKAQxg8UHnwEqnBowpz4XLhMd1yB8_xdl58X1ZLqcFt34Kq9zNiXGirjuHa-QnTEiQH66U-LT-k2LVKNxdnUpo3CX3kLoMQ7rkUu7XWJD9XBXFlCuTcXXSF3FmiCHsYFxFKmf2KNL2z3zNm5GSN7ZLoxU6fUQeTu4jXYx4PyZ3fPuE3B8LSl4_JX8Xq-qb-eXFR4o8xGmMch02PoU_b8CwposVvWpWI-rUmaH3PUUX8Kob6-E0jq4PqQS02SDpJXLCjkG019S0NfWXsRRYvEcXaD-4C9qgmzm2eUbOT7_-_nKWTnUWUlfmcgswsSBZUKxytQL_wuSitpw5IWsVAEphhWW-yI3MAuPcsKyyLvDMicLkFUwZz8lR27X-BaGYKlsG8IEltwUztbHKlOCBKs6DzF2VkHz3tbWbSMixFsaljpvhXOkRIQ0I6YiQlgl5v--zHik4bm39GUHct0T67Hii26z0pI26DMHDUQchoT8rjLIs566wXAUfnEvI8U4E9KTTvT5IYELe7i-DNuIWi2l9N8Q2yJhflSwhciY6swHNr7TNReT1rjDrsMoT8mEnZIeH__-FX94-1lfkAUNxzzD18JgcbTeDfw1-1Na-icryD3mdHO0 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiKcItMhI3CAisRPb4basWiokuECl3izbsbeR2qTa7B567w_v2Em2SgVIHHJJxnl9M55JPPMNwIdSG9RdadPKIgzo8dHm0EunGp0py7nNuAv_IX_85Cenxfez8mwP6FQLE5P2I6VlnKan7LDPfRFNOuaeo1fkqXgADwN1e9DqJV_u_qsExnNZFGN9TMbkH4bOfFCk6p_Fl_ezI-8tkUbPc_wUnowhI1kMN_kM9lz7HB4NTSSvX8DNYlV9078c_0IC93AaM1vxyVL82kbcarJYkctmNSBNrN72rich7Lvshh44jSVXd-UDpFkHosvAAzskzl4T3dbEXcT2X_EcnSf91p6TJoSWg8xLOD0--r08ScfeCqktc7FBaKgX1Eta2VpiTKFzXhtGLRe19AgfN9xQV-RaZJ4ypmlWGetZZnmh8wqniVew33atew0klMeWHuNewUxBda2N1CVGnZIxL3JbJZBPb1vZkXg89L-4UHEBnEk1IKQQIRURUiKBj7sxVwPtxj-lvwYQd5KBMjvu6NYrNaqQKr13uNWeCxxPCy0NzZktDJPeeWsTOJhUQI123CvKBc5aTEqewPvdYbTAsKyiW9dto0xgya9KmoCYqc7shuZH2uY8cnlXodKwyhP4NCnZ3cX__sBv_k_8LTymQf2zUH54APub9dYdYiy1Me-i8dwC1nkaqQ priority: 102 providerName: Springer Nature |
Title | Ag9GaSe6: high-pressure-induced Ag migration causes thermoelectric performance irreproducibility and elimination of such instability |
URI | https://link.springer.com/article/10.1038/s41467-022-30716-7 https://www.proquest.com/docview/2670513886 https://www.proquest.com/docview/2671275952 https://pubmed.ncbi.nlm.nih.gov/PMC9142491 https://doaj.org/article/5ffe5ffdf6714624a8b213c4b38fefcc |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY5_MWxc02NvmzZZsSR6MkYamJdAy1gXyZmRZSgOp0yUxLO_7w3eS7ZSUbrAH22DLsq270_1k6X4H8C5VBequ1GGmUQzo8dHm0EuHCp0pi7mOuHH_Ic8v-Nk4GU3SyR506Y7aBlzdO7Rz-aTGy_nHXz83X9HgvzQh4_LTKvHm7telo8fkodiHQ_RMwhnqeQv3fc_MMhzQuIlmGiVxiL6btXE091ez46s8pf8ODr27ivLOVKr3UMPH8KiFlqTf6MIT2DPVU3jQJJvcPIPf_Wl2qi4N_0wcR3HoV8DWSxPiqBzlW5L-lFzPpo1GEK3qlVkRBw-vF02unJkmN7dhBmS2dISYji-2WWC7IaoqiZn7NGG-joUlq1pfkZmDoE2Z5zAenvwYnIVtDoZQp7FYowipFdRKmulSIvZQMS8LRjUXpbQoZl7wgpokViKylDFFo6zQlkWaJyrOsDt5AQfVojIvgbgw2tQiPhasSKgqVSFViuhUMmZFrLMA4q61c90SlLs8GfPcT5QzmTcSylFCuZdQLgJ4v73npqHn-GfpYyfEbUlHre1PLJbTvLXUPLXW4FZaLvB-mihZ0JjppGDSGqt1AEedCuSduuaUC-zdmJQ8gLfby2ipbvpFVWZR-zKOTT9LaQBiR3V2Xmj3SjW78pzfmYtIzOIAPnRKdvvwv3_wq_9qntfwkDrtj1yU4hEcrJe1eYOQa130YF9MBO7l8LQHh_3-6HKEx-OTi2_f8eyAD3r-Z0bP29sfg3Isbg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikCBYwEJ4ia2IntICG0PMqWPi600t6M49jbSG2ybDZCe-f38BsZO8muthK99ZBL4iRO5hvP2J75BqHXqcoBu0KHmQYxgMUHnQMrHSowpjRmOmLGrUMeHbPxafJ9kk620N8hF8aFVQ5joh-oi1q7NfJdwjjghwrBPs5-ha5qlNtdHUpodLA4MMvfMGVrPux_Afm-IWTv68nncdhXFQh1GvMFdIpYTqwgmS4EWFMVsyKnRDNeCAsdZznLiUlixSNLKFUkynJtaaRZouIMFASeewPdBMMbOY3iE75a03Fs6yJJ-tyciIrdJvEjkQ-ZB2POQr5h_3yZgA3f9nJk5qXtWW_19u6hu727ikcdvu6jLVM9QLe6ApbLh-jPaJp9Uz8Me48d73Hoo2rbuQlhpg-YKfBoii_KaYcyrFXbmAY7l_Oi7urvlBrP1qkLuJw7kk3HQdsF7S6xqgpszn3pMf-M2uKm1We4dG5t1-YROr0WCTxG21VdmScIu9Tc1ILPzWmeEFWoXKgUPF5BqeWxzgIUD39b6p703NXeOJd-850K2UlIgoSkl5DkAXq7umfWUX5c2fqTE-KqpaPr9ifq-VT22i9Taw0chWUc7ieJEjmJqU5yKqyxWgdoZ4CA7MeQRq4RH6BXq8ug_W5LR1Wmbn0bx9CfpSRAfAM6Gx3avFKVZ55HPHNZjlkcoHcDyNYv__8HP726ry_R7fHJ0aE83D8-eIbuEAf9yKU97qDtxbw1z8GHW-QvvOJg9PO6NfUfxRlZGA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGEIjLxKcIDDASnCBqYie2g4RQYZSNwYQEk3rzHMfuKm1J1zRCvfNX8dfx7CStOonddsilcRKn7_c-Yr_3ewi9SlUO2BU6zDSIATw-6Bx46VCBM6Ux0xEzbh3y-xHbP06-jtPxFvrb18K4tMreJnpDXVTarZEPCOOAHyoEG9guLeLH3ujD7CJ0HaTcTmvfTqOFyKFZ_obPt_r9wR7I-jUho8-_Pu2HXYeBUKcxX8AEieXECpLpQoBnVTErcko044Ww8BIsZzkxSax4ZAmlikRZri2NNEtUnIGywH1voJucwsxAl_iYr9Z3HPO6SJKuTieiYlAn3ir59Hlw7CzkG77QtwzYiHMvZ2le2qr1HnB0F-10oSsetli7h7ZMeR_daptZLh-gP8NJ9kX9NOwddhzIoc-wbeYmhK9-wE-BhxN8Pp20iMNaNbWpsQs_z6u2F89U49m6jAFP545w0_HRtgm8S6zKApsz34bM36OyuG70KZ66ELcd8xAdX4sEHqHtsirNY4RdmW5qIf7mNE-IKlQuVArRr6DU8lhnAYr7f1vqjgDd9eE4k34jngrZSkiChKSXkOQBerO6ZtbSf1w5-qMT4mqko-72P1TziewsgUytNXAUlnG4niRK5CSmOsmpsMZqHaDdHgKysye1XKM_QC9Xp8ESuO0dVZqq8WMcW3-WkgDxDehsTGjzTDk99Zzimat4zOIAve1Btn74_1_4ydVzfYFug47KbwdHh0_RHeKQH7kKyF20vZg35hmEc4v8udcbjE6uW1H_Ac8AXU4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ag9GaSe6%3A+high-pressure-induced+Ag+migration+causes+thermoelectric+performance+irreproducibility+and+elimination+of+such+instability&rft.jtitle=Nature+communications&rft.au=Liu%2C+Jing-Yuan&rft.au=Chen%2C+Ling&rft.au=Wu%2C+Li-Ming&rft.date=2022-05-27&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-30716-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_022_30716_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |