Ag9GaSe6: high-pressure-induced Ag migration causes thermoelectric performance irreproducibility and elimination of such instability

The argyrodite Ag 9 GaSe 6 is a newly recognized high-efficiency thermoelectric material with an ultralow thermal conductivity; however, liquid-like Ag atoms are believed to cause poor stability and performance irreproducibility, which was evidenced even after the 1 st measurement run. Herein, we de...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 2966 - 10
Main Authors Liu, Jing-Yuan, Chen, Ling, Wu, Li-Ming
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.05.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The argyrodite Ag 9 GaSe 6 is a newly recognized high-efficiency thermoelectric material with an ultralow thermal conductivity; however, liquid-like Ag atoms are believed to cause poor stability and performance irreproducibility, which was evidenced even after the 1 st measurement run. Herein, we demonstrate the abovementioned instability and irreproducibility are caused by standard thermoelectric sample hot-pressing procedure, during which high pressure promotes the 3-fold-coordinated Ag atoms migrate to 4-fold-coordinated sites with higher-chemical potentials. Such instability can be eliminated by a simple annealing treatment, driving the metastable Ag atoms back to the original sites with lower-chemical potentials as revealed by the valence band X-ray photoelectron chemical potential spectra and single crystal X-ray diffraction data. Furthermore, the hot-pressed-annealed samples exhibit great stability and TE property repeatability. Such a stability and repeatability has never been reported before. This discovery will give liquid-like materials great application potential. The Ag 9 GaSe 6 is a high-efficient thermoelectric material yet suffers instability. Here, the authors demonstrate the instability is caused by the pressure-induced liquid-like Ag migration, which can be eliminated by a simple annealing treatment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-30716-7