Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo

In humans, lipid nanoparticles (LNPs) have safely delivered therapeutic RNA to hepatocytes after systemic administration and to antigen-presenting cells after intramuscular injection. However, systemic RNA delivery to non-hepatocytes remains challenging, especially without targeting ligands such as...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; p. 4766
Main Authors Ni, Huanzhen, Hatit, Marine Z. C., Zhao, Kun, Loughrey, David, Lokugamage, Melissa P., Peck, Hannah E., Cid, Ada Del, Muralidharan, Abinaya, Kim, YongTae, Santangelo, Philip J., Dahlman, James E.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.08.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In humans, lipid nanoparticles (LNPs) have safely delivered therapeutic RNA to hepatocytes after systemic administration and to antigen-presenting cells after intramuscular injection. However, systemic RNA delivery to non-hepatocytes remains challenging, especially without targeting ligands such as antibodies, peptides, or aptamers. Here we report that piperazine-containing ionizable lipids (Pi-Lipids) preferentially deliver mRNA to immune cells in vivo without targeting ligands. After synthesizing and characterizing Pi-Lipids, we use high-throughput DNA barcoding to quantify how 65 chemically distinct LNPs functionally delivered mRNA (i.e., mRNA translated into functional, gene-editing protein) in 14 cell types directly in vivo. By analyzing the relationships between lipid structure and cellular targeting, we identify lipid traits that increase delivery in vivo. In addition, we characterize Pi-A10, an LNP that preferentially delivers mRNA to the liver and splenic immune cells at the clinically relevant dose of 0.3 mg/kg. These data demonstrate that high-throughput in vivo studies can identify nanoparticles with natural non-hepatocyte tropism and support the hypothesis that lipids with bioactive small-molecule motifs can deliver mRNA in vivo. Next-generation lipid nanoparticles that target non-hepatocytes could be important clinical tools. Using in vivo DNA barcoding, the authors identify piperazine-containing lipids deliver mRNA to immune cells without targeting ligands.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-32281-5