Design, fabrication and testing of 3D printed smartphone-based device for collection of intrinsic fluorescence from human cervix
Fluorescence spectroscopy has the potential to identify discriminatory signatures, crucial for early diagnosis of cervical cancer. We demonstrate here the design, fabrication and testing of a 3D printed smartphone based spectroscopic device. Polarized fluorescence and elastic scattering spectra are...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; p. 11192 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fluorescence spectroscopy has the potential to identify discriminatory signatures, crucial for early diagnosis of cervical cancer. We demonstrate here the design, fabrication and testing of a 3D printed smartphone based spectroscopic device. Polarized fluorescence and elastic scattering spectra are captured through the device using a 405 nm laser and a white LED source respectively. The device has been calibrated by comparison of spectra of standard fluorophores (Flavin adenine dinucleotide, fluorescein, rhodamine, and porphyrin) with the corresponding spectra collected from a commercial spectrometer. A few cervical tissue spectra have also been captured for proof of its applicability as a portable, standalone device for the collection of intrinsic fluorescence spectra from human cervix. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-15007-x |