A VEGFR targeting peptide-drug conjugate (PDC) suppresses tumor angiogenesis in a TACE model for hepatocellular carcinoma therapy

Transcatheter arterial chemoembolization (TACE) has become the preferred therapy for unresectable advanced hepatocellular carcinoma (HCC). However, the embolization of tumor-feeding arteries by TACE always leads to hypoxia-related tumor angiogenesis, which limited the therapeutic effect for HCC. In...

Full description

Saved in:
Bibliographic Details
Published inCell death discovery Vol. 8; no. 1; p. 411
Main Authors Wang, Dongyuan, Liu, Jiacheng, Li, Tongqiang, Wang, Yingliang, Liu, Xiaoming, Bai, Yaowei, Wang, Chaoyang, Ju, Shuguang, Huang, Songjiang, Yang, Chongtu, Zhou, Chen, Zhang, Yu, Xiong, Bin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.10.2022
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transcatheter arterial chemoembolization (TACE) has become the preferred therapy for unresectable advanced hepatocellular carcinoma (HCC). However, the embolization of tumor-feeding arteries by TACE always leads to hypoxia-related tumor angiogenesis, which limited the therapeutic effect for HCC. In this paper, we used a VEGFR targeting peptide VEGF125 − 136 (QKRKRKKSRYKS) to conjugate with a lytic peptide (KLUKLUKKLUKLUK) to form a peptide-drug conjugate (PDC). We used cell affinity assay to detect the peptide binding ability to VEGFR highly expressed cell lines, and CCK8, cell apoptosis to confirm the cellular toxicity for different cell lines. Meanwhile, we created a VX2 tumor-bearing rabbit model to assess the in vivo anti-tumor effect of the peptide conjugate in combination with TAE. HE staining was used to verify the in vivo safety of the peptide conjugate. IHC was used to assess the anti-angiogenesis and cell toxicity of the peptide conjugate in tumor tissues. The peptide conjugate could not only target VEGFR in cell surface and inhibit VEGFR function, but also have potent anti-cancer effect. We luckily found the peptide conjugate showed potent cytotoxicity for liver cancer cell Huh7 (IC50 7.3 ± 0.74 μM) and endothelial cell HUVEC (IC50 10.7 ± 0.292 μM) and induced cell apoptosis of these two cell lines. We also found the peptide conjugate inhibited cell migration of HUVEC through wound healing assay. Besides, these peptides also showed better in vivo anti-tumor effect than traditional drug DOX through TACE in VX2 rabbit tumor model, and efficiently inhibit angiogenesis in tumor tissues with good safety. In conclusion, our work may provide an alternative option for clinical HCC therapy via TACE combination. Schematic presentation of the design of VEGFR targeting peptide conjugate (QR-KLU) and the antineoplastic efficacy of peptide QR-KLU in vitro and in vivo.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2058-7716
2058-7716
DOI:10.1038/s41420-022-01198-9