A stokes polarimetric light microscopy view of liquid crystal droplets

The optical characteristics of materials, such as their magnetooptical effects, birefringence, optical activities, linear and circular dichroism, are probed via the polarisation states of light transmitted through or reflected from the specimens. As such, the measurements of the polarisation states...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; p. 16329
Main Authors Gou, J., Shen, T. H., Bao, P., Ramos Angulo, J. L., Evans, S. D.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.08.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The optical characteristics of materials, such as their magnetooptical effects, birefringence, optical activities, linear and circular dichroism, are probed via the polarisation states of light transmitted through or reflected from the specimens. As such, the measurements of the polarisation states play an important role in many research disciplines. Experimentally, Stokes parameters provide a full description of the polarisation states of light. We report the implementation of a dual- photoelastic modulator based polarimeter in a light microscope, enabling the determination of Stokes parameters at each pixel. As a case study, polarimetric images of liquid crystal droplets of different internal structures are obtained, showing their distinct polarisation characteristics. We demonstrate that the prototype Stokes polarimetric microscope allows the quantitative determination of the polarisation characteristics of light at the object plane and enables the access of the information of full polarisation states as compared to a conventional cross polariser microscope. This work shows that Stokes polarimetric microscopy may find potential applications in a wide range of research fields.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-95674-4