Simulating Dynamic Plastic Continuous Neural Networks by Finite Elements

We introduce dynamic plastic continuous neural network (DPCNN), which is comprised of neurons distributed in a nonlinear plastic medium where wire-like connections of neural networks are replaced with the continuous medium. We use finite element method to model the dynamic phenomenon of information...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 25; no. 8; pp. 1583 - 1587
Main Authors Joghataie, Abdolreza, Torghabehi, Omid Oliyan
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce dynamic plastic continuous neural network (DPCNN), which is comprised of neurons distributed in a nonlinear plastic medium where wire-like connections of neural networks are replaced with the continuous medium. We use finite element method to model the dynamic phenomenon of information processing within the DPCNNs. During the training, instead of weights, the properties of the continuous material at its different locations and some properties of neurons are modified. Input and output can be vectors and/or continuous functions over lines and/or areas. Delay and feedback from neurons to themselves and from outputs occur in the DPCNNs. We model a simple form of the DPCNN where the medium is a rectangular plate of bilinear material, and the neurons continuously fire a signal, which is a function of the horizontal displacement.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2013.2294315