Rapid endogenic rock recycling in magmatic arcs
In subduction zones, materials on Earth’s surface can be transported to the deep crust or mantle, but the exact mechanisms and the nature of the recycled materials are not fully understood. Here, we report a set of migmatites from western Yangtze Block, China. These migmatites have similar bulk comp...
Saved in:
Published in | Nature communications Vol. 12; no. 1; p. 3533 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.06.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In subduction zones, materials on Earth’s surface can be transported to the deep crust or mantle, but the exact mechanisms and the nature of the recycled materials are not fully understood. Here, we report a set of migmatites from western Yangtze Block, China. These migmatites have similar bulk compositions as forearc sediments. Zircon age distributions and Hf–O isotopes indicate that the precursors of the sediments were predominantly derived from juvenile arc crust itself. Using phase equilibria modeling, we show that the sediments experienced high temperature-to-pressure ratio metamorphism and were most likely transported to deep arc crust by intracrustal thrust faults. By dating the magmatic zircon cores and overgrowth rims, we find that the entire rock cycle, from arc magmatism, to weathering at the surface, then to burial and remelting in the deep crust, took place within ~10 Myr. Our findings highlight thrust faults as an efficient recycling channel in compressional arcs and endogenic recycling as an important mechanism driving internal redistribution and differentiation of arc crust.
A case study of migmatites indicates that the juvenile arc crust underwent a rapid self-recycling process from arc magmatism to erosion and weathering at the surface, then to burial and remelting. Intra-arc thrust fault systems might efficiently promote endogenous recycling. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-23797-3 |