Achieving asymmetry and trapping in diffusion with spatiotemporal metamaterials

The process of diffusion is central to the ever increasing entropic state of the universe and is fundamental in many branches of science and engineering. Although non-reciprocal metamaterials are well developed for wave systems, the studies of diffusive metamaterials have been limited by their chara...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; p. 3733
Main Authors Camacho, Miguel, Edwards, Brian, Engheta, Nader
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.07.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The process of diffusion is central to the ever increasing entropic state of the universe and is fundamental in many branches of science and engineering. Although non-reciprocal metamaterials are well developed for wave systems, the studies of diffusive metamaterials have been limited by their characteristic spatial inversion symmetry and time inversion antisymmetry. Here, we achieve large spatial asymmetric diffusion characteristics inside a metamaterial whose material parameters are space- and time-modulated. Inside such a spatiotemporal metamaterial, diffusion occurs as if the material had an intrinsic flow velocity, whose direction is dictated by the relative phase between the modulations of the conductivity and capacity. This creates dramatic out-of-equilibrium concentrations and depletions, which we demonstrate experimentally for the diffusion of electric charges in a one-dimensional electrical system composed of an array of space-time-modulated variable capacitors and switches. These results may offer exciting possibilities in various fields, including electronics, thermal management, chemical mixing, etc. Being able to manipulate the temporal evolution and spatial distribution of diffusive quantities would provide exciting possibilities for applications. Here, the authors show that one can achieve large spatial asymmetric diffusion characteristics inside a metamaterial whose material parameters are space- and time-modulated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-17550-5