Statistical morphological analysis reveals characteristic paraspinal muscle asymmetry in unilateral lumbar disc herniation

Growing evidence suggests an association of lumbar paraspinal muscle morphology with low back pain (LBP) and lumbar pathologies. Unilateral spinal disorders provide unique models to study this association, with implications for diagnosis, prognosis, and management. Statistical shape analysis is a te...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; p. 15576
Main Authors Xiao, Yiming, Fortin, Maryse, Ahn, Joshua, Rivaz, Hassan, Peters, Terry M., Battié, Michele C.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.08.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Growing evidence suggests an association of lumbar paraspinal muscle morphology with low back pain (LBP) and lumbar pathologies. Unilateral spinal disorders provide unique models to study this association, with implications for diagnosis, prognosis, and management. Statistical shape analysis is a technique that can identify signature shape variations related to phenotypes but has never been employed in studying paraspinal muscle morphology. We present the first investigation using this technique to reveal disease-related paraspinal muscle asymmetry, using MRIs of patients with a single posterolateral disc herniation at the L5-S1 spinal level and unilateral leg pain. Statistical shape analysis was conducted to reveal disease- and phenotype-related morphological variations in the multifidus and erector spinae muscles at the level of herniation and the one below. With the analysis, shape variations associated with disc herniation were identified in the multifidus on the painful side at the level below the pathology while no pathology-related asymmetry in cross-sectional area (CSA) and fatty infiltration was found in either muscle. The results demonstrate higher sensitivity and spatial specificity for the technique than typical CSA and fatty infiltration measures. Statistical shape analysis holds promise in studying paraspinal muscle morphology to improve our understanding of LBP and various lumbar pathologies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-95149-6