Wrapping glia regulates neuronal signaling speed and precision in the peripheral nervous system of Drosophila

The functionality of the nervous system requires transmission of information along axons with high speed and precision. Conductance velocity depends on axonal diameter whereas signaling precision requires a block of electrical crosstalk between axons, known as ephaptic coupling. Here, we use the per...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; p. 4491
Main Authors Kottmeier, Rita, Bittern, Jonas, Schoofs, Andreas, Scheiwe, Frederieke, Matzat, Till, Pankratz, Michael, Klämbt, Christian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.09.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The functionality of the nervous system requires transmission of information along axons with high speed and precision. Conductance velocity depends on axonal diameter whereas signaling precision requires a block of electrical crosstalk between axons, known as ephaptic coupling. Here, we use the peripheral nervous system of Drosophila larvae to determine how glia regulates axonal properties. We show that wrapping glial differentiation depends on gap junctions and FGF-signaling. Abnormal glial differentiation affects axonal diameter and conductance velocity and causes mild behavioral phenotypes that can be rescued by a sphingosine-rich diet. Ablation of wrapping glia does not further impair axonal diameter and conductance velocity but causes a prominent locomotion phenotype that cannot be rescued by sphingosine. Moreover, optogenetically evoked locomotor patterns do not depend on conductance speed but require the presence of wrapping glial processes. In conclusion, our data indicate that wrapping glia modulates both speed and precision of neuronal signaling. Conduction velocity and precise neuronal transmission depend on axonal diameter and ephatic coupling, respectively. Here, the authors showed that wrapping glia regulates both conduction speed and precision of neuronal signalling in the Drosophila peripheral nervous system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-18291-1