An easy to implement logic analyzer for long-term precise measurements

[Display omitted] Most of market-available logic analyzers are designed for hardware debug purposes and cannot record continuous measurement in long-term while in different fields of scientific research it is necessary to make data acquisition within small periods (less then 1 ms) during several hou...

Full description

Saved in:
Bibliographic Details
Published inHardwareX Vol. 9; p. e00164
Main Author Romanov, Alexey M.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Most of market-available logic analyzers are designed for hardware debug purposes and cannot record continuous measurement in long-term while in different fields of scientific research it is necessary to make data acquisition within small periods (less then 1 ms) during several hours or even days. The common example is real-time communication worst-case jitter analysis. This paper introduces an easy to implement approach how to create a logic analyzer for such kind of task on a basis of a low-cost Field-Programmable Gate Array (FPGA) kit and a personal computer. The Author provides both sample FPGA design files compatible with an open-source toolchain and the approach how to collect data using standard software and Octave scripts to post-process the experimental result. Following the Author’s guidelines even with minimal knowledge in FPGA design makes it easy to modify the introduced hardware for specific laboratory team needs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2468-0672
2468-0672
DOI:10.1016/j.ohx.2020.e00164