Response Surface Methodology (RSM) on the Hybrid Nanofluid Flow Subject to a Vertical and Permeable Wedge

The mixed convection flow with thermal characteristics of a water-based Cu-Al2O3 hybrid nanofluid towards a vertical and permeable wedge was numerically and statistically analyzed in this study. The governing model was constructed using physical and theoretical assumptions, which were then reduced t...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 12; no. 22; p. 4016
Main Authors Khashi’ie, Najiyah Safwa, Waini, Iskandar, Mukhtar, Mohd Fariduddin, Zainal, Nurul Amira, Hamzah, Khairum Bin, Arifin, Norihan Md, Pop, Ioan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.11.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mixed convection flow with thermal characteristics of a water-based Cu-Al2O3 hybrid nanofluid towards a vertical and permeable wedge was numerically and statistically analyzed in this study. The governing model was constructed using physical and theoretical assumptions, which were then reduced to a set of ordinary differential equations (ODEs) using similarity transformation. The steady flow solutions were computed using the Matlab software bvp4c. All possible solutions were presented in the graphs of skin friction coefficient and thermal rate. The numerical results show that the flow and thermal progresses are developed by enhancing the controlling parameters (wedge parameter, volumetric concentration of nanoparticles, and suction parameter). Moreover, the response surface methodology (RSM) with analysis of variance (ANOVA) was employed for the statistical evaluation and conducted using the fit general linear model in the Minitab software. From the standpoint of statistical analysis, the wedge parameter and volumetric nanoparticle concentration have a considerable impact on all responses; however, the suction parameter effect is only substantial for a single response.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2079-4991
2079-4991
DOI:10.3390/nano12224016