Generation of even and odd high harmonics in resonant metasurfaces using single and multiple ultra-intense laser pulses

High harmonic generation (HHG) opens a window on the fundamental science of strong-field light-mater interaction and serves as a key building block for attosecond optics and metrology. Resonantly enhanced HHG from hot spots in nanostructures is an attractive route to overcoming the well-known limita...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; p. 4185
Main Authors Shcherbakov, Maxim R., Zhang, Haizhong, Tripepi, Michael, Sartorello, Giovanni, Talisa, Noah, AlShafey, Abdallah, Fan, Zhiyuan, Twardowski, Justin, Krivitsky, Leonid A., Kuznetsov, Arseniy I., Chowdhury, Enam, Shvets, Gennady
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.07.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High harmonic generation (HHG) opens a window on the fundamental science of strong-field light-mater interaction and serves as a key building block for attosecond optics and metrology. Resonantly enhanced HHG from hot spots in nanostructures is an attractive route to overcoming the well-known limitations of gases and bulk solids. Here, we demonstrate a nanoscale platform for highly efficient HHG driven by intense mid-infrared laser pulses: an ultra-thin resonant gallium phosphide (GaP) metasurface. The wide bandgap and the lack of inversion symmetry of the GaP crystal enable the generation of even and odd harmonics covering a wide range of photon energies between 1.3 and 3 eV with minimal reabsorption. The resonantly enhanced conversion efficiency facilitates single-shot measurements that avoid material damage and pave the way to study the controllable transition between perturbative and non-perturbative regimes of light-matter interactions at the nanoscale. Strong nonlinearities, like high harmonic generation in optical systems, can lead to interesting applications in photonics. Here the authors fabricate a thin resonant gallium phosphide metasurface capable of avoiding the laser-induced damage and demonstrate efficient even and odd high harmonic generation from it when driven by mid-infrared laser pulses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24450-9