Effect of continuous, mechanically passive, anti-gravity assistance on kinematics and muscle activity during dynamic shoulder elevation

Passive shoulder exoskeletons, which provide continuous anti-gravitational force at the shoulder, could assist with dynamic shoulder elevation movements involved in activities of daily living and rehabilitation exercises. However, prior biomechanical studies of these exoskeletons primarily focused o...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 103; p. 109685
Main Authors Hall, Patrick T., Crouch, Dustin L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 16.04.2020
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Passive shoulder exoskeletons, which provide continuous anti-gravitational force at the shoulder, could assist with dynamic shoulder elevation movements involved in activities of daily living and rehabilitation exercises. However, prior biomechanical studies of these exoskeletons primarily focused on static overhead tasks. In this study, we evaluated how continuous passive anti-gravity assistance affects able-bodied neuromuscular activity and shoulder kinematics during dynamic and static phases of shoulder elevation movements. Subjects, seated upright, elevated the shoulder from a rest posture (arm relaxed at the side) to a target shoulder elevation angle of 90°. Subjects performed the movement in the frontal (abduction) and scapular (scaption) planes with and without passive anti-gravity assistance. Muscles that contribute to positive shoulder elevation, based on their reported moment arms, had significantly lower muscle activations with assistance during both dynamic and static elevation. Muscles that contribute to negative shoulder elevation, which can decelerate the shoulder during dynamic shoulder elevation, were not significantly different between assistance conditions. This may be partly explained by the trend of subjects to reduce their maximum angular decelerations near the target to offset the positive shoulder elevation moment due to the anti-gravity assistance. Our results suggest that passive anti-gravity assistance could reduce the muscle activations needed to perform dynamic movements. Consequently, the anti-gravity assistance of passive shoulder exoskeletons may enhance motor function and reduce muscle and joint loads for both able-bodied and disabled users.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0021-9290
1873-2380
1873-2380
DOI:10.1016/j.jbiomech.2020.109685