Speech-based recognition of self-reported and observed emotion in a dimensional space
► Exploration of the use of self-reported emotion ratings for automatic affect recognition. ► Better recognition performance is obtained with observed emotion ratings than self-reported ratings. ► Averaging emotion ratings from multiple annotators improves performance. ► Valence is better recognized...
Saved in:
Published in | Speech communication Vol. 54; no. 9; pp. 1049 - 1063 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Exploration of the use of self-reported emotion ratings for automatic affect recognition. ► Better recognition performance is obtained with observed emotion ratings than self-reported ratings. ► Averaging emotion ratings from multiple annotators improves performance. ► Valence is better recognized with lexical than acoustic features.
The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look at how differences between these two types of ratings affect the development and performance of automatic emotion recognizers developed with these ratings. A dimensional approach to emotion modeling is adopted: the ratings are based on continuous arousal and valence scales. We describe the TNO-Gaming Corpus that contains spontaneous vocal and facial expressions elicited via a multiplayer videogame and that includes emotion annotations obtained via self-report and observation by outside observers. Comparisons show that there are discrepancies between self-reported and observed emotion ratings which are also reflected in the performance of the emotion recognizers developed. Using Support Vector Regression in combination with acoustic and textual features, recognizers of arousal and valence are developed that can predict points in a 2-dimensional arousal-valence space. The results of these recognizers show that the self-reported emotion is much harder to recognize than the observed emotion, and that averaging ratings from multiple observers improves performance. |
---|---|
AbstractList | ► Exploration of the use of self-reported emotion ratings for automatic affect recognition. ► Better recognition performance is obtained with observed emotion ratings than self-reported ratings. ► Averaging emotion ratings from multiple annotators improves performance. ► Valence is better recognized with lexical than acoustic features.
The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look at how differences between these two types of ratings affect the development and performance of automatic emotion recognizers developed with these ratings. A dimensional approach to emotion modeling is adopted: the ratings are based on continuous arousal and valence scales. We describe the TNO-Gaming Corpus that contains spontaneous vocal and facial expressions elicited via a multiplayer videogame and that includes emotion annotations obtained via self-report and observation by outside observers. Comparisons show that there are discrepancies between self-reported and observed emotion ratings which are also reflected in the performance of the emotion recognizers developed. Using Support Vector Regression in combination with acoustic and textual features, recognizers of arousal and valence are developed that can predict points in a 2-dimensional arousal-valence space. The results of these recognizers show that the self-reported emotion is much harder to recognize than the observed emotion, and that averaging ratings from multiple observers improves performance. The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look at how differences between these two types of ratings affect the development and performance of automatic emotion recognizers developed with these ratings. A dimensional approach to emotion modeling is adopted: the ratings are based on continuous arousal and valence scales. We describe the TNO-Gaming Corpus that contains spontaneous vocal and facial expressions elicited via a multiplayer videogame and that includes emotion annotations obtained via self-report and observation by outside observers. Comparisons show that there are discrepancies between self-reported and observed emotion ratings which are also reflected in the performance of the emotion recognizers developed. Using Support Vector Regression in combination with acoustic and textual features, recognizers of arousal and valence are developed that can predict points in a 2-dimensional arousal-valence space. The results of these recognizers show that the self-reported emotion is much harder to recognize than the observed emotion, and that averaging ratings from multiple observers improves performance. [Copyright Elsevier B.V.] The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look at how differences between these two types of ratings affect the development and performance of automatic emotion recognizers developed with these ratings. A dimensional approach to emotion modeling is adopted: the ratings are based on continuous arousal and valence scales. We describe the TNO-Gaming Corpus that contains spontaneous vocal and facial expressions elicited via a multiplayer videogame and that includes emotion annotations obtained via self-report and observation by outside observers. Comparisons show that there are discrepancies between self-reported and observed emotion ratings which are also reflected in the performance of the emotion recognizers developed. Using Support Vector Regression in combination with acoustic and textual features, recognizers of arousal and valence are developed that can predict points in a 2-dimensional arousal-valence space. The results of these recognizers show that the self-reported emotion is much harder to recognize than the observed emotion, and that averaging ratings from multiple observers improves performance. |
Author | de Jong, Franciska M.G. Truong, Khiet P. van Leeuwen, David A. |
Author_xml | – sequence: 1 givenname: Khiet P. surname: Truong fullname: Truong, Khiet P. email: k.p.truong@utwente.nl organization: University of Twente, Human Media Interaction, P.O. Box 217, 7500 AE Enschede, The Netherlands – sequence: 2 givenname: David A. surname: van Leeuwen fullname: van Leeuwen, David A. email: d.vanleeuwen@let.ru.nl organization: Radboud University Nijmegen, Centre for Language and Speech Technology, P.O. Box 9103, 6500 HD Nijmegen, The Netherlands – sequence: 3 givenname: Franciska M.G. surname: de Jong fullname: de Jong, Franciska M.G. email: f.m.g.dejong@utwente.nl organization: University of Twente, Human Media Interaction, P.O. Box 217, 7500 AE Enschede, The Netherlands |
BookMark | eNqNkU1LxDAQhoMouH78Aw89emlNptkmvQiy-AWCB_Uc0nSiWdqkJl3Bf2_W9ayehmGe9z3Mc0T2ffBIyBmjFaOsuVhXaUITxgoog4ryitJmjyyYFFAKJmGfLDImyqZu60NylNKaUsqlhAV5eZoQzVvZ6YR9EXPLq3ezC74Itkg42DLiFOKcj9r3RegSxo-84Bi-KecLXfRuRJ_yqociTdrgCTmwekh4-jOPycvN9fPqrnx4vL1fXT2UZsnEXNYUatkZ4AJtB1S32HY1660BKjpmAbSVnHGNXSuFsf2yBbsUttcgTCeErI_J-a53iuF9g2lWo0sGh0F7DJuk2LJuWCMpwN8olQBA25b_B2Uyg7zNKN-hJoaUIlo1RTfq-JkhtXWj1mrnRm3dKMpVdpNjl7sY5ud8OIwqGYfeYO-ygln1wf1e8AWYq5tr |
CODEN | SCOMDH |
CitedBy_id | crossref_primary_10_3389_fnhum_2014_00144 crossref_primary_10_1007_s10579_019_09450_y crossref_primary_10_1080_01691864_2019_1667872 crossref_primary_10_1016_j_specom_2013_04_005 crossref_primary_10_1016_j_jnca_2019_102423 crossref_primary_10_1093_llc_fqu041 crossref_primary_10_1250_ast_36_370 crossref_primary_10_1109_TCSS_2021_3130401 crossref_primary_10_1007_s42761_023_00199_w crossref_primary_10_1016_j_csl_2018_02_002 crossref_primary_10_1038_s41597_020_00630_y crossref_primary_10_17798_bitlisfen_1079499 crossref_primary_10_1007_s10919_017_0268_x crossref_primary_10_3390_s21041249 crossref_primary_10_1007_s12193_013_0129_9 crossref_primary_10_1007_s12559_014_9296_6 crossref_primary_10_1016_j_specom_2019_12_001 crossref_primary_10_1080_10447318_2019_1688985 crossref_primary_10_1109_JPROC_2023_3276209 crossref_primary_10_1016_j_actpsy_2022_103713 crossref_primary_10_3390_electronics10101163 crossref_primary_10_1111_sjop_12429 crossref_primary_10_1109_TAFFC_2022_3155604 |
Cites_doi | 10.1007/BFb0026683 10.1016/j.specom.2007.01.010 10.21437/Interspeech.2008-95 10.1109/ICME.2005.1521551 10.1109/ICASSP.2009.4959521 10.1037/0003-066X.50.5.372 10.1109/FG.2011.5771357 10.1007/11821830_23 10.21437/Interspeech.2005-380 10.1109/ICASSP.2003.1202279 10.1016/0306-4573(88)90021-0 10.1023/B:STCO.0000035301.49549.88 10.1037/h0077714 10.1121/1.1913238 10.21437/Interspeech.2005-700 10.21437/ICSLP.2002-559 10.21437/Eurospeech.2003-80 10.21437/Interspeech.2008-192 10.1037/0022-3514.70.3.614 10.1037/1528-3542.5.4.513 10.21437/Interspeech.2009-583 10.1109/79.911197 10.1016/j.neunet.2005.03.007 10.21437/Interspeech.2005-381 10.1109/ICME.2003.1221370 10.21437/Interspeech.2009-474 10.21437/ICSLP.1996-462 10.21437/Eurospeech.2003-306 10.21437/Interspeech.2004-327 10.1109/T-AFFC.2011.9 10.1109/ICASSP.2007.367262 10.1016/S0167-6393(02)00071-7 10.1016/j.specom.2006.04.003 10.21437/Interspeech.2009-471 10.1162/pres.15.4.381 10.1007/978-3-540-85853-9_15 10.1007/s12193-009-0032-6 10.21437/Interspeech.2008-92 10.1016/S0167-6393(03)00099-2 10.1037/h0054570 10.1109/TMM.2004.840618 10.21437/ICSLP.2002-557 10.1109/ICME.2005.1521717 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. |
Copyright_xml | – notice: 2012 Elsevier B.V. |
DBID | AAYXX CITATION 7T9 7SC 7SP 8FD JQ2 L7M L~C L~D 8BM |
DOI | 10.1016/j.specom.2012.04.006 |
DatabaseName | CrossRef Linguistics and Language Behavior Abstracts (LLBA) Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ComDisDome |
DatabaseTitle | CrossRef Linguistics and Language Behavior Abstracts (LLBA) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional ComDisDome |
DatabaseTitleList | Linguistics and Language Behavior Abstracts (LLBA) ComDisDome Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Languages & Literatures Social Welfare & Social Work Psychology |
EISSN | 1872-7182 |
EndPage | 1063 |
ExternalDocumentID | 10_1016_j_specom_2012_04_006 S0167639312000507 |
GroupedDBID | --K --M -~X .DC .~1 07C 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN 9JO AACTN AADFP AAEDT AAEDW AAFJI AAGJA AAGJQ AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABIVO ABJNI ABMAC ABMMH ABOYX ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACXNI ACZNC ADBBV ADEZE ADIYS ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFYLN AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OKEIE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSB SSO SST SSV SSY SSZ T5K WUQ XFK XJE ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7T9 7SC 7SP 8FD JQ2 L7M L~C L~D 8BM |
ID | FETCH-LOGICAL-c517t-30238bc247efb20a9e9b31dfc207b1f22af8414aeb987cfd592f57fda27cb7783 |
IEDL.DBID | .~1 |
ISSN | 0167-6393 |
IngestDate | Fri Oct 25 22:06:18 EDT 2024 Fri Oct 25 12:21:42 EDT 2024 Fri Oct 25 00:10:57 EDT 2024 Thu Sep 26 15:18:10 EDT 2024 Fri Feb 23 02:28:32 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Affective computing Emotion database Emotion perception Emotion annotation Support Vector Regression Automatic emotion recognition Emotion elicitation Emotional speech Audiovisual database Videogames |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-30238bc247efb20a9e9b31dfc207b1f22af8414aeb987cfd592f57fda27cb7783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://ris.utwente.nl/ws/files/6781115/final-s2.0-S0167639312000507-main.pdf |
PQID | 1081899449 |
PQPubID | 23478 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1536168022 proquest_miscellaneous_1082220994 proquest_miscellaneous_1081899449 crossref_primary_10_1016_j_specom_2012_04_006 elsevier_sciencedirect_doi_10_1016_j_specom_2012_04_006 |
PublicationCentury | 2000 |
PublicationDate | November 2012 2012-11-00 20121101 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: November 2012 |
PublicationDecade | 2010 |
PublicationTitle | Speech communication |
PublicationYear | 2012 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ekman, Friesen (b0095) 1975 Petrushin, V.A., 1999. Emotion in speech: recognition and application to call centers. In: Proc. 1999 Conf. on Artificial Neural Networks in Engineering (ANNIE’99). Wöllmer, M., Eyben, F., Schuller, B., Douglas-Cowie, E., Cowie, R., 2009. Data-driven clustering in emotional space for affect recognition using discriminatively trained lstm networks. In: Proc. Interspeech, pp. 1595–1598. Joachims, T., 1998. Text categorization with support vector machines: learning with many relevant features. In: Proc. 10th European Conf. on Machine Learning (ECML-98), pp. 137–142. Ververidis, D., Kotropoulos, C., 2005. Emotional speech classification using gaussian mixture models and the sequential floating forward selection algorithm. In: Proc. IEEE Internat. Conf. on Multimedia and Expo (ICME 2005), pp. 1500 –1503. Tato, R., Santos, R., Kompe, R., Pardo, J.M., 2002. Emotional space improves emotion recognition. In: Proc. Internat. Conf. on Spoken Language Processing (ICSLP 2002), pp. 2029–2032. Kim, J., André, E., Rehm, M., Vogt, T., Wagner, J., 2005. Integrating information from speech and physiological signals to achieve emotional sensitivity. In: Proc. Interspeech, pp. 809–812. Nicolaou, Gunes, Pantic (b0180) 2011; 2 Lang (b0150) 1995; 50 Giannakopoulos, T., Pikrakis, A., Theodoridis, S., 2009. A dimensional approach to emotion recognition of speech from movies. In: Proc. IEEE Internat. Conf. on Acoustics, Speech and Signal Processing (ICASSP’09), pp. 65–68. Wöllmer, M., Eyben, F., Reiter, S., Schuller, B., Cox, C., Douglas-Cowie, E., Cowie, R., 2008. Abandoning emotion classes – towards continuous emotion recognition with modeling of long-range dependencies. In: Proc. Interspeech, pp. 597–600. Truong, K.P., Raaijmakers, S., 2008. Automatic recognition of spontaneous emotions in speech using acoustic and lexical features. In: Proc. Fifth Joint Workshop on Machine Learning and Multimodal Interaction (MLMI 2008), pp. 161–172. Schuller, B., Rigoll, G., Lang, M., 2003. Hidden Markov model-based speech emotion recognition. In: Proc. IEEE Internat. Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2003), pp. 1–4. Truong, K.P., Van Leeuwen, D.A., Neerincx, M.A., De Jong, F.M.G., 2009. Arousal and valence prediction in spontaneous emotional speech: felt versus perceived emotion. In: Proc. Interspeech, pp. 2027–2030. Wang, N., Marsella, S., 2006. Introducing EVG: an emotion evoking game. In: Proc. Internat. Conf. on Interactive Virtual Agents (IVA 2006), pp. 282 – 291. Zeng, Z., Zhang, Z., Pianfetti, B., Tu, J., Huang, T.S., 2005. Audio-visual affect recognition in activation-evaluation space. In: Proc. IEEE Internat. Conf. on Multimedia and Expo (ICME’05), pp. 828–831. Nicolaou, M.A., Gunes, H., Pantic, M., 2010. Automatic segmentation of spontaneous data using dimensional labels from multiple coders. In: Proc. Internat. Workship on Multimodal Corpora: Advances in Capturing, Coding and Analyzing Multimodality, pp. 43–48. Lee, C.M., Narayanan, S., Pieraccini, R., 2002. Classifying emotions in human-machine spoken dialogs. In: Proc. IEEE Internat. Conf. on Multimedia and Expo (ICME ’02), pp. 737–740. Nwe, Foo, De Silva (b0185) 2003; 41 Gunes, H., Schuller, B., Pantic, M., Cowie, R., 2011. Emotion representation, analysis and synthesis in continuous space: a survey. In: Proc. IEEE Internat. Conf. on Automatic Face & Gesture Recognition and Workshops (FG2011), pp. 827–834. Banse, Scherer (b0015) 1996; 70 Busso, C., Narayanan, S.S., 2008. The expression and perception of emotions: comparing assessments of self versus others. In: Proc. Interspeech 2008, pp. 257–260. Salton, Buckley (b0210) 1988; 24 Grimm, Kroschel, Mower, Narayanan (b0110) 2007; 49 Schlosberg (b0220) 1954; 61 Auberge, V., Audibert, N., Rilliard, A., 2006. Auto-annotation: an alternative method to label expressive corpora. In: Proc. Fifth Internat. Conf. on Language Resources and Evaluation (LREC 2006). . Grimm, M., Kroschel, K., Narayanan, S., 2007b. Support Vector Regression for automatic recognition of spontaneous emotions in speech. In: Proc. IEEE Internat. Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2007), pp. 1085–1088. Yu, C., Aoki, P., Woodruff, A., 2004. Detecting user engagement in everyday conversations. In: Proc. Interspeech, pp. 1329–1332. Batliner, A., Fischer, K., Huber, R., Spilker, J., Nöth, E., 2000. Desperately seeking emotions: actors, wizards, and human beings. In: Cowie, R., Douglas-Cowie, E., Schröder, M. (Eds.), In: Proc. ISCA Workshop on Speech and Emotion: A Conceptual Framework for Research, pp. 195–200. Biersack, S., Kempe, V., 2005. Tracing vocal expression of emotion along the speech chain: do listeners perceive what speakers feel? In: Proc. ISCA Workshop on Plasticity in Speech Perception (PSP2005), pp. 211–214. Johnstone, van Reekum, Hird, Kirsner, Scherer (b0135) 2005; 5 Batliner, A., Steidl, S., Schuller, B., Seppi, D., Laskowski, K., Vogt, T., Devillers, L., Vidrascu, L., Amir, N., Kessous, L., Aharonson, V., 2006. Combining efforts for improving automatic classification of emotional user states. In: Language Technologies (IS-LTC), pp. 240–245. Devillers, L., Lamel, L., Vasilescu, I., 2003. Emotion detection in task-oriented spoken dialogues. In: Proc. IEEE Internat. Conf. on Multimedia and Expo (ICME’03), pp. 549–552. Liscombe, J., Venditti, J., Hirschberg, J., 2003. Classifying subject ratings of emotional speech using acoustic features. In: Proc. Eurospeech, pp. 725–728. Douglas-Cowie, E., Devillers, L., Martin, J.-C., Cowie, R., Davvidou, S., Abrillian, S., Cox, C., 2005. Multimodal databases of everyday emotion: facing up to complexity. In: Proc. Interspeech 2005, pp. 813–816. Boersma, P., Weenink, D., 2009. Praat: doing phonetics by computer (Version 5.1.07). [Computer Program]. Cowie, R., Douglas-Cowie, E., Savvidou, S., McMahon, E., Sawey, M., Schroeder, M., 2000. FEELTRACE: an instrument for recording perceived emotion in real time. In: Proc. ISCA ITRW on Speech and Emotion, pp. 19–24. Ekman, P., 1972. Universals and cultural differences in facial expressions of emotion. In: Cole, J. (Ed.), Nebraska Symposium on Motivation, pp. 207–283. Williams, Stevens (b0275) 1972; 52 Russell (b0205) 1980; 39 Cowie, Cornelius (b0050) 2003; 40 Retrieved 16.06.09. Smola, Scholkopf (b0230) 2004; 14 Vapnik (b0255) 2002 Cowie, Douglas-Cowie, Tsapatsoulis, Votsis, Kollias, Fellenz, Taylor (b0060) 2001; 18 Ververidis, Kotropoulos (b0265) 2006; 48 Polzin, T., Waibel, A., 1998. Detecting emotions in speech. In: Proc. Cooperative Multimodal Communication (CMC’98). Kwon, O.-W., Chan, K., Hao, J., Lee, T.-W., 2003. Emotion recognition by speech signals. In: Proc. Eurospeech, pp. 125–128. Lazarro, N., 2004. Why We Play Games: Four Keys to More Emotion Without Story. Ang, J., Dhillon, R., Krupski, A., Shriberg, E., Stolcke, A., 2002. Prosody-based automatic detection of annoyance and frustration in human-computer dialog. In: Proceedings of the International Conference on Spoken Language Processing (ICSLP 2002), pp. 2037–2040. Yildirim, S., Lee, C.M., Lee, S., Potamianos, A., Narayanan, S.S., 2005. Detecting politeness and frustration state of a child in a conversational computer game. In: Proc. Interspeech 2005, pp. 2209–2212. Dellaert, F., Polzin, T., Waibel, A., 1996. Recognizing emotion in speech. In: Proc. Internat. Conf. on Spoken Language Processing (ICSLP 1996), pp. 1970–1973. Ravaja, Saari, Turpeinen, Laarni, Salminen, Kivikangas (b0200) 2006; 15 Hanjalic, Xu (b0125) 2005; 7 Scherer, K.R., 2010. The component process model: architecture for a comprehensive computational model of emergent emotion. In: Scherer, K.R., Bänziger, T., Roesch, E. (Eds.), Blueprint for Affective Computing: A Sourcebook, pp. 47–70. Truong, K.P., Neerincx, M.A., Van Leeuwen, D.A., 2008. Assessing agreement of observer- and self-annotations in spontaneous multimodal emotion data. In: Proc. Interspeech 2008, pp. 381–321. Mower, E., Mataric, M.J., Narayanan, S.S., 2009. Evaluating evaluators: a case study in understanding the benefits and pitfalls of multi-evaluator modeling. In: Proc. Interspeech 2009, pp. 1583–1586. Wundt (b0290) 1874/1905 Eyben, Wöllmer, Graves, Schuller, Douglas-Cowie, Cowie (b0100) 2010; 3 Den Uyl, M.J., Van Kuilenburg, H., 2005. The facereader: online facial expression recognition. In: Proc. Measuring Behavior, pp. 589–590. Devillers, Vidrascu, Lamel (b0080) 2005; 18 Chang, C.-C., Lin, C.-J., 2001. LIBSVM: a library for support vector machines. Hanjalic (10.1016/j.specom.2012.04.006_b0125) 2005; 7 Williams (10.1016/j.specom.2012.04.006_b0275) 1972; 52 Lang (10.1016/j.specom.2012.04.006_b0150) 1995; 50 10.1016/j.specom.2012.04.006_b0215 10.1016/j.specom.2012.04.006_b0010 10.1016/j.specom.2012.04.006_b0175 10.1016/j.specom.2012.04.006_b0055 Schlosberg (10.1016/j.specom.2012.04.006_b0220) 1954; 61 Nicolaou (10.1016/j.specom.2012.04.006_b0180) 2011; 2 Salton (10.1016/j.specom.2012.04.006_b0210) 1988; 24 Cowie (10.1016/j.specom.2012.04.006_b0060) 2001; 18 Ravaja (10.1016/j.specom.2012.04.006_b0200) 2006; 15 10.1016/j.specom.2012.04.006_b0250 Ververidis (10.1016/j.specom.2012.04.006_b0265) 2006; 48 Devillers (10.1016/j.specom.2012.04.006_b0080) 2005; 18 10.1016/j.specom.2012.04.006_b0130 10.1016/j.specom.2012.04.006_b0295 10.1016/j.specom.2012.04.006_b0090 Nwe (10.1016/j.specom.2012.04.006_b0185) 2003; 41 10.1016/j.specom.2012.04.006_b0170 Ekman (10.1016/j.specom.2012.04.006_b0095) 1975 Eyben (10.1016/j.specom.2012.04.006_b0100) 2010; 3 Smola (10.1016/j.specom.2012.04.006_b0230) 2004; 14 10.1016/j.specom.2012.04.006_b0305 10.1016/j.specom.2012.04.006_b0025 10.1016/j.specom.2012.04.006_b0300 10.1016/j.specom.2012.04.006_b0225 10.1016/j.specom.2012.04.006_b0105 10.1016/j.specom.2012.04.006_b0065 Cowie (10.1016/j.specom.2012.04.006_b0050) 2003; 40 10.1016/j.specom.2012.04.006_b0145 Grimm (10.1016/j.specom.2012.04.006_b0110) 2007; 49 10.1016/j.specom.2012.04.006_b0260 10.1016/j.specom.2012.04.006_b0140 10.1016/j.specom.2012.04.006_b0020 10.1016/j.specom.2012.04.006_b0235 10.1016/j.specom.2012.04.006_b0115 10.1016/j.specom.2012.04.006_b0155 10.1016/j.specom.2012.04.006_b0035 Banse (10.1016/j.specom.2012.04.006_b0015) 1996; 70 10.1016/j.specom.2012.04.006_b0270 10.1016/j.specom.2012.04.006_b0030 10.1016/j.specom.2012.04.006_b0195 10.1016/j.specom.2012.04.006_b0075 10.1016/j.specom.2012.04.006_b0190 10.1016/j.specom.2012.04.006_b0070 Johnstone (10.1016/j.specom.2012.04.006_b0135) 2005; 5 10.1016/j.specom.2012.04.006_b0245 10.1016/j.specom.2012.04.006_b0005 10.1016/j.specom.2012.04.006_b0120 Vapnik (10.1016/j.specom.2012.04.006_b0255) 2002 10.1016/j.specom.2012.04.006_b0285 10.1016/j.specom.2012.04.006_b0165 10.1016/j.specom.2012.04.006_b0045 Wundt (10.1016/j.specom.2012.04.006_b0290) 1874 10.1016/j.specom.2012.04.006_b0160 10.1016/j.specom.2012.04.006_b0040 10.1016/j.specom.2012.04.006_b0085 10.1016/j.specom.2012.04.006_b0240 Russell (10.1016/j.specom.2012.04.006_b0205) 1980; 39 10.1016/j.specom.2012.04.006_b0280 |
References_xml | – year: 1975 ident: b0095 article-title: Unmasking the Face: A Guide to Recognizing Emotions from Facial Expressions contributor: fullname: Friesen – volume: 15 start-page: 381 year: 2006 end-page: 392 ident: b0200 article-title: Spatial presence and emotions during video game playing: does it matter with whom you play? publication-title: Presence: Teleoper. Virtual Environ. contributor: fullname: Kivikangas – volume: 49 start-page: 787 year: 2007 end-page: 800 ident: b0110 article-title: Primitives-based evaluation and estimation of emotions in speech publication-title: Speech Commun. contributor: fullname: Narayanan – volume: 50 start-page: 371 year: 1995 end-page: 385 ident: b0150 article-title: The emotion probe publication-title: Amer. Psychol. contributor: fullname: Lang – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: b0230 article-title: A tutorial on support vector regression publication-title: Stat. Comput. contributor: fullname: Scholkopf – volume: 41 start-page: 603 year: 2003 end-page: 623 ident: b0185 publication-title: Speech Commun. contributor: fullname: De Silva – year: 2002 ident: b0255 article-title: The Nature of Statistical Learning Theory contributor: fullname: Vapnik – volume: 5 start-page: 513 year: 2005 end-page: 518 ident: b0135 article-title: Affective speech elicited with a computer game publication-title: Emotion contributor: fullname: Scherer – volume: 48 start-page: 1162 year: 2006 end-page: 1181 ident: b0265 article-title: Emotional speech recognition: resources, features, and methods publication-title: Speech Commun. contributor: fullname: Kotropoulos – volume: 18 start-page: 407 year: 2005 end-page: 422 ident: b0080 article-title: Challenges in real-life emotion annotation and machine learning based detection publication-title: Neural Networks contributor: fullname: Lamel – volume: 40 start-page: 5 year: 2003 end-page: 32 ident: b0050 article-title: Describing the emotional states that are expressed in speech publication-title: Speech Commun. contributor: fullname: Cornelius – volume: 7 start-page: 143 year: 2005 end-page: 154 ident: b0125 article-title: Affective video content representation and modeling publication-title: IEEE Trans. Multimedia contributor: fullname: Xu – volume: 3 start-page: 7 year: 2010 end-page: 19 ident: b0100 article-title: On-line emotion recognition in a 3-d activation-valence-time continuum using acoustic and linguistic cues publication-title: J. Multimodal User Interf. contributor: fullname: Cowie – volume: 39 start-page: 1161 year: 1980 end-page: 1178 ident: b0205 article-title: A circumplex model of affect publication-title: J. Pers. Soc. Psychol. contributor: fullname: Russell – volume: 70 start-page: 614 year: 1996 end-page: 636 ident: b0015 article-title: Acoustic profiles in vocal emotion expression publication-title: J. Pers. Soc. Psychol. contributor: fullname: Scherer – volume: 52 start-page: 1238 year: 1972 end-page: 1250 ident: b0275 article-title: Emotions and speech: some acoustical correlates publication-title: J. Acoust. Soc. Amer. contributor: fullname: Stevens – volume: 24 start-page: 513 year: 1988 end-page: 523 ident: b0210 article-title: Term-weighting approaches in automatic text retrieval publication-title: Inform. Process. Manage. contributor: fullname: Buckley – volume: 61 start-page: 81 year: 1954 end-page: 88 ident: b0220 publication-title: Psychol. Rev. contributor: fullname: Schlosberg – volume: 2 start-page: 92 year: 2011 end-page: 105 ident: b0180 article-title: Continuous prediction of spontaneous affect from multiple cues and modalities in valence-arousal space publication-title: IEEE Trans. Affect. Comput. contributor: fullname: Pantic – year: 1874/1905 ident: b0290 article-title: Grundzüge der physiologischen Psychologie, [Fundamentals of pshysiological psychology] contributor: fullname: Wundt – volume: 18 start-page: 32 year: 2001 end-page: 80 ident: b0060 article-title: Emotion recognition in human-computer interaction publication-title: IEEE Signal Process. Mag. contributor: fullname: Taylor – ident: 10.1016/j.specom.2012.04.006_b0130 doi: 10.1007/BFb0026683 – volume: 49 start-page: 787 year: 2007 ident: 10.1016/j.specom.2012.04.006_b0110 article-title: Primitives-based evaluation and estimation of emotions in speech publication-title: Speech Commun. doi: 10.1016/j.specom.2007.01.010 contributor: fullname: Grimm – ident: 10.1016/j.specom.2012.04.006_b0240 doi: 10.21437/Interspeech.2008-95 – ident: 10.1016/j.specom.2012.04.006_b0195 – ident: 10.1016/j.specom.2012.04.006_b0025 – ident: 10.1016/j.specom.2012.04.006_b0305 doi: 10.1109/ICME.2005.1521551 – ident: 10.1016/j.specom.2012.04.006_b0105 doi: 10.1109/ICASSP.2009.4959521 – volume: 50 start-page: 371 year: 1995 ident: 10.1016/j.specom.2012.04.006_b0150 article-title: The emotion probe publication-title: Amer. Psychol. doi: 10.1037/0003-066X.50.5.372 contributor: fullname: Lang – ident: 10.1016/j.specom.2012.04.006_b0120 doi: 10.1109/FG.2011.5771357 – ident: 10.1016/j.specom.2012.04.006_b0270 doi: 10.1007/11821830_23 – ident: 10.1016/j.specom.2012.04.006_b0035 – ident: 10.1016/j.specom.2012.04.006_b0010 – ident: 10.1016/j.specom.2012.04.006_b0140 doi: 10.21437/Interspeech.2005-380 – ident: 10.1016/j.specom.2012.04.006_b0175 – ident: 10.1016/j.specom.2012.04.006_b0045 – ident: 10.1016/j.specom.2012.04.006_b0225 doi: 10.1109/ICASSP.2003.1202279 – volume: 24 start-page: 513 issue: 5 year: 1988 ident: 10.1016/j.specom.2012.04.006_b0210 article-title: Term-weighting approaches in automatic text retrieval publication-title: Inform. Process. Manage. doi: 10.1016/0306-4573(88)90021-0 contributor: fullname: Salton – volume: 14 start-page: 199 issue: 3 year: 2004 ident: 10.1016/j.specom.2012.04.006_b0230 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 contributor: fullname: Smola – ident: 10.1016/j.specom.2012.04.006_b0160 – volume: 39 start-page: 1161 year: 1980 ident: 10.1016/j.specom.2012.04.006_b0205 article-title: A circumplex model of affect publication-title: J. Pers. Soc. Psychol. doi: 10.1037/h0077714 contributor: fullname: Russell – volume: 52 start-page: 1238 issue: 4B year: 1972 ident: 10.1016/j.specom.2012.04.006_b0275 article-title: Emotions and speech: some acoustical correlates publication-title: J. Acoust. Soc. Amer. doi: 10.1121/1.1913238 contributor: fullname: Williams – ident: 10.1016/j.specom.2012.04.006_b0295 doi: 10.21437/Interspeech.2005-700 – ident: 10.1016/j.specom.2012.04.006_b0005 doi: 10.21437/ICSLP.2002-559 – ident: 10.1016/j.specom.2012.04.006_b0020 – ident: 10.1016/j.specom.2012.04.006_b0145 doi: 10.21437/Eurospeech.2003-80 – ident: 10.1016/j.specom.2012.04.006_b0030 – ident: 10.1016/j.specom.2012.04.006_b0055 – ident: 10.1016/j.specom.2012.04.006_b0280 doi: 10.21437/Interspeech.2008-192 – volume: 70 start-page: 614 year: 1996 ident: 10.1016/j.specom.2012.04.006_b0015 article-title: Acoustic profiles in vocal emotion expression publication-title: J. Pers. Soc. Psychol. doi: 10.1037/0022-3514.70.3.614 contributor: fullname: Banse – volume: 5 start-page: 513 issue: 4 year: 2005 ident: 10.1016/j.specom.2012.04.006_b0135 article-title: Affective speech elicited with a computer game publication-title: Emotion doi: 10.1037/1528-3542.5.4.513 contributor: fullname: Johnstone – ident: 10.1016/j.specom.2012.04.006_b0250 doi: 10.21437/Interspeech.2009-583 – volume: 18 start-page: 32 issue: 1 year: 2001 ident: 10.1016/j.specom.2012.04.006_b0060 article-title: Emotion recognition in human-computer interaction publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.911197 contributor: fullname: Cowie – year: 2002 ident: 10.1016/j.specom.2012.04.006_b0255 contributor: fullname: Vapnik – volume: 18 start-page: 407 year: 2005 ident: 10.1016/j.specom.2012.04.006_b0080 article-title: Challenges in real-life emotion annotation and machine learning based detection publication-title: Neural Networks doi: 10.1016/j.neunet.2005.03.007 contributor: fullname: Devillers – ident: 10.1016/j.specom.2012.04.006_b0085 doi: 10.21437/Interspeech.2005-381 – year: 1874 ident: 10.1016/j.specom.2012.04.006_b0290 contributor: fullname: Wundt – ident: 10.1016/j.specom.2012.04.006_b0075 doi: 10.1109/ICME.2003.1221370 – ident: 10.1016/j.specom.2012.04.006_b0285 doi: 10.21437/Interspeech.2009-474 – ident: 10.1016/j.specom.2012.04.006_b0065 doi: 10.21437/ICSLP.1996-462 – ident: 10.1016/j.specom.2012.04.006_b0215 – ident: 10.1016/j.specom.2012.04.006_b0155 – ident: 10.1016/j.specom.2012.04.006_b0165 doi: 10.21437/Eurospeech.2003-306 – ident: 10.1016/j.specom.2012.04.006_b0300 doi: 10.21437/Interspeech.2004-327 – volume: 2 start-page: 92 year: 2011 ident: 10.1016/j.specom.2012.04.006_b0180 article-title: Continuous prediction of spontaneous affect from multiple cues and modalities in valence-arousal space publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.9 contributor: fullname: Nicolaou – ident: 10.1016/j.specom.2012.04.006_b0115 doi: 10.1109/ICASSP.2007.367262 – volume: 40 start-page: 5 year: 2003 ident: 10.1016/j.specom.2012.04.006_b0050 article-title: Describing the emotional states that are expressed in speech publication-title: Speech Commun. doi: 10.1016/S0167-6393(02)00071-7 contributor: fullname: Cowie – volume: 48 start-page: 1162 issue: 9 year: 2006 ident: 10.1016/j.specom.2012.04.006_b0265 article-title: Emotional speech recognition: resources, features, and methods publication-title: Speech Commun. doi: 10.1016/j.specom.2006.04.003 contributor: fullname: Ververidis – ident: 10.1016/j.specom.2012.04.006_b0170 doi: 10.21437/Interspeech.2009-471 – volume: 15 start-page: 381 year: 2006 ident: 10.1016/j.specom.2012.04.006_b0200 article-title: Spatial presence and emotions during video game playing: does it matter with whom you play? publication-title: Presence: Teleoper. Virtual Environ. doi: 10.1162/pres.15.4.381 contributor: fullname: Ravaja – ident: 10.1016/j.specom.2012.04.006_b0090 – ident: 10.1016/j.specom.2012.04.006_b0190 – ident: 10.1016/j.specom.2012.04.006_b0245 doi: 10.1007/978-3-540-85853-9_15 – volume: 3 start-page: 7 year: 2010 ident: 10.1016/j.specom.2012.04.006_b0100 article-title: On-line emotion recognition in a 3-d activation-valence-time continuum using acoustic and linguistic cues publication-title: J. Multimodal User Interf. doi: 10.1007/s12193-009-0032-6 contributor: fullname: Eyben – ident: 10.1016/j.specom.2012.04.006_b0040 doi: 10.21437/Interspeech.2008-92 – year: 1975 ident: 10.1016/j.specom.2012.04.006_b0095 contributor: fullname: Ekman – volume: 41 start-page: 603 year: 2003 ident: 10.1016/j.specom.2012.04.006_b0185 publication-title: Speech Commun. doi: 10.1016/S0167-6393(03)00099-2 contributor: fullname: Nwe – volume: 61 start-page: 81 year: 1954 ident: 10.1016/j.specom.2012.04.006_b0220 publication-title: Psychol. Rev. doi: 10.1037/h0054570 contributor: fullname: Schlosberg – volume: 7 start-page: 143 year: 2005 ident: 10.1016/j.specom.2012.04.006_b0125 article-title: Affective video content representation and modeling publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2004.840618 contributor: fullname: Hanjalic – ident: 10.1016/j.specom.2012.04.006_b0235 doi: 10.21437/ICSLP.2002-557 – ident: 10.1016/j.specom.2012.04.006_b0260 doi: 10.1109/ICME.2005.1521717 – ident: 10.1016/j.specom.2012.04.006_b0070 |
SSID | ssj0004882 |
Score | 2.2714021 |
Snippet | ► Exploration of the use of self-reported emotion ratings for automatic affect recognition. ► Better recognition performance is obtained with observed emotion... The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 1049 |
SubjectTerms | Affective computing Arousal Audiovisual database Automatic emotion recognition Emotion annotation Emotion database Emotion elicitation Emotion perception Emotional speech Emotions Mathematical analysis Mathematical models Observers Ratings Recognition Regression Support Vector Regression Videogames |
Title | Speech-based recognition of self-reported and observed emotion in a dimensional space |
URI | https://dx.doi.org/10.1016/j.specom.2012.04.006 https://search.proquest.com/docview/1081899449 https://search.proquest.com/docview/1082220994 https://search.proquest.com/docview/1536168022 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQXLigdmkpLSBXqriFjR0ndo4IFW0p4gKrcrP8qW6LktXucuiF385MnGwFElTqMc5YsjzjN2N73piQLyxAWJ7nJqsD7HSEg5WuCl8CGKpSsUKpwnVZvlfVZCoubsvbDXI2cGEwrbLH_oTpHVr3LeN-Nsfz2Wx8jQn04F8LxrsqJsgoF-D-wKZPHv6meYCB8qG-N0oP9LkuxwvZjC3y0fFEEMtoVy-5p2dA3Xmf8zdkpw8b6Wka2VuyEZoR2bvsDxuX9JherusjL0dke41rf0bkIFFw6Y9wF80igOzQ0C5-75Lp9TwE9zNDf-bpOqGobWgb6RL6ZOleAX6axtPW4jkufIT0ABCdNdRQj48EpAIfFDDKhXdkev715myS9Y8tZK5kcpXh40HKOi5kiJbnpg61LZiPjufSssi5iUowYYKtlXTRlzWPpYzecOmslKp4TzabtgkfCOXMY1W9WOMdp7VKlc5Ir6ogbMzr6PdJNsyxnqeaGnpINvulk0406kTnQoNO9okcFKGf2IYG2P9Hz8-D3jQsG7wLMU1o75dYF5XBVlOI-lUZiJ4ghBavyJRFxSrkK3_871F-Itv4lRiOB2RztbgPhxDqrOxRZ8tHZOv02_fJ1SNOkv3M |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcqAXBMurpYCRELewsePEzhFVVAssvbQrerP8FAsoWe1uD73w25nJYxFIFIljnLFkecbfjO2ZzwCveMSwPM9tVkfc6UiPK10XoUQw1KXmhdaF77J8z6rZQn64LC_34GSshaG0ygH7e0zv0HpomQ6zOV0tl9NzSqBH_1pw0bGYqFtwW1J8jEb95sevPA-0UDESfJP4WD_XJXlROWNLBel0JEg82tXf_NMfSN25n9N7cHeIG9nbfmj3YS82E3g8H04bN-w1m-8IkjcTONgB2_UEjvsaXPY5fk92HVF2bGjX3x7A4nwVo_-SkUMLbJdR1DasTWyDfbL-YgF_2iaw1tFBLn7E_gUgtmyYZYFeCegZPhiClI8PYXH67uJklg2vLWS-5Gqb0etB2nkhVUxO5LaOtSt4SF7kyvEkhE1acmmjq7XyKZS1SKVKwQrlnVK6eAT7TdvEJ8AED0Srl2q65HRO69JbFXQVpUt5ncIhZOMcm1VPqmHGbLOvpteJIZ2YXBrUySGoURHmN-MwiPv_6Ply1JvBdUOXIbaJ7dWGiFE57jWlrG-UwfAJY2h5g0xZVLyiguWj_x7lC7gzu_g0N_P3Zx-fwgH96csdj2F_u76KzzDu2brnnV3_BC3F_2U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speech-based+recognition+of+self-reported+and+observed+emotion+in+a+dimensional+space&rft.jtitle=Speech+communication&rft.au=Truong%2C+Khiet+P&rft.au=van+Leeuwen%2C+David+A&rft.au=de+Jong%2C+Franciska+MG&rft.date=2012-11-01&rft.issn=0167-6393&rft.volume=54&rft.issue=9&rft.spage=1049&rft.epage=1063&rft_id=info:doi/10.1016%2Fj.specom.2012.04.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6393&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6393&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6393&client=summon |