The infeasibility of quantifying the reliability of life-critical real-time software

This work affirms that the quantification of life-critical software reliability is infeasible using statistical methods, whether these methods are applied to standard software or fault-tolerant software. The classical methods of estimating reliability are shown to lead to exorbitant amounts of testi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on software engineering Vol. 19; no. 1; pp. 3 - 12
Main Authors Butler, R.W., Finelli, G.B.
Format Journal Article
LanguageEnglish
Published Legacy CDMS IEEE 01.01.1993
IEEE Computer Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This work affirms that the quantification of life-critical software reliability is infeasible using statistical methods, whether these methods are applied to standard software or fault-tolerant software. The classical methods of estimating reliability are shown to lead to exorbitant amounts of testing when applied to life-critical software. Reliability growth models are examined and also shown to be incapable of overcoming the need for excessive amounts of testing. The key assumption of software fault tolerance-separately programmed versions fail independently-is shown to be problematic. This assumption cannot be justified by experimentation in the ultrareliability region, and subjective arguments in its favor are not sufficiently strong to justify it as an axiom. Also, the implications of the recent multiversion software experiments support this affirmation.< >
Bibliography:CDMS
Legacy CDMS
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0098-5589
1939-3520
DOI:10.1109/32.210303