Novel Pumping Methods for Microfluidic Devices: A Comprehensive Review
This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is...
Saved in:
Published in | Biosensors (Basel) Vol. 12; no. 11; p. 956 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.11.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and “multitasking”. These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology. |
---|---|
AbstractList | This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and “multitasking”. These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology. This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and "multitasking". These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology.This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and "multitasking". These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology. |
Audience | Academic |
Author | Erofeev, Alexander S. Iakovlev, Aleksei P. Gorelkin, Petr V. |
AuthorAffiliation | Research Laboratory of Biophysics, National University of Science and Technology «MISiS», 119049 Moscow, Russia |
AuthorAffiliation_xml | – name: Research Laboratory of Biophysics, National University of Science and Technology «MISiS», 119049 Moscow, Russia |
Author_xml | – sequence: 1 givenname: Aleksei P. surname: Iakovlev fullname: Iakovlev, Aleksei P. – sequence: 2 givenname: Alexander S. surname: Erofeev fullname: Erofeev, Alexander S. – sequence: 3 givenname: Petr V. orcidid: 0000-0002-4860-9013 surname: Gorelkin fullname: Gorelkin, Petr V. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36354465$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vEzEQhi1URD_ojTNaiQsHUvztNQekKFCo1AJCcLa8s3biaHcd7N2g_nsc0qK0wj7YmnnmtV-PT9HREAeH0AuCLxjT-G0TYiaUEKyFfIJOKFZ6JpniRwf7Y3Se8xqXobjSTD1Dx0wywbkUJ-jyS9y6rvo29ZswLKsbN65imysfU3UTIEXfTaENUH1w2wAuv6vm1SL2m-RWbshh66rvJeF-P0dPve2yO79bz9DPy48_Fp9n118_XS3m1zMQRI0z2mreNEQA9lq3xILm1GteM8Z4K7wHQdtGKWAt0VCThklhNZQc1FgT59kZutrrttGuzSaF3qZbE20wfwMxLY1NY4DOGS-1rhuwrFGcUwvWCwyAteNMOUZk0Xq_19pMTe9acMOYbPdA9GFmCCuzjFujZV1TSYrA6zuBFH9NLo-mDxlc19nBxSkbqpggUnLFCvrqEbqOUxrKU-0oLrGmTBXqYk8tbTEQBh_LuVBm6_oApfM-lPhccUEVVnhn4eWhhX93v-9vAegeKK3MOTlvIIx2DHHnKHSGYLP7R-bwH5WiN4-K7nX_i_8BsvnINA |
CitedBy_id | crossref_primary_10_1515_nanoph_2023_0301 crossref_primary_10_1016_j_aca_2023_341634 crossref_primary_10_1007_s13206_024_00141_7 crossref_primary_10_1038_s41467_024_46928_y crossref_primary_10_2196_62770 crossref_primary_10_3390_mi15040465 crossref_primary_10_1002_smll_202404685 crossref_primary_10_1016_j_tifs_2023_04_010 crossref_primary_10_1007_s12195_024_00817_y crossref_primary_10_3390_bioengineering10080902 crossref_primary_10_3390_molecules29020398 crossref_primary_10_1016_j_bios_2024_117122 crossref_primary_10_1080_17425255_2024_2362183 crossref_primary_10_1007_s42452_024_06103_w crossref_primary_10_3390_mi15121524 crossref_primary_10_1016_j_aca_2023_341342 crossref_primary_10_1016_j_cjph_2025_01_033 crossref_primary_10_1088_1361_6439_ad983c crossref_primary_10_3390_ijms241612699 crossref_primary_10_1002_smll_202402499 crossref_primary_10_1007_s10544_024_00709_y crossref_primary_10_1016_j_bprint_2024_e00371 crossref_primary_10_1016_j_microc_2024_111819 crossref_primary_10_3390_en17236157 crossref_primary_10_1021_acs_analchem_4c00142 crossref_primary_10_1002_jssc_202300373 crossref_primary_10_3389_fbioe_2024_1355768 crossref_primary_10_1016_j_hoc_2024_04_004 crossref_primary_10_3389_fmed_2024_1452298 crossref_primary_10_1007_s44371_025_00133_y crossref_primary_10_1016_j_xphs_2024_04_001 crossref_primary_10_1039_D4LC00489B crossref_primary_10_1016_j_mtbio_2024_101048 |
Cites_doi | 10.1021/ac0261449 10.1007/s10544-012-9683-2 10.1128/AEM.03588-15 10.1038/s41598-021-98655-9 10.1016/j.polymer.2009.09.053 10.3390/mi11010067 10.1039/c1lc20251k 10.1038/srep04462 10.1007/s10404-020-02411-w 10.1109/MEMSYS.2011.5734629 10.1146/annurev-anchem-090919-102205 10.1063/1.4906458 10.1039/B609813D 10.20944/preprints201903.0031.v1 10.1016/j.biotechadv.2016.02.002 10.1039/b817915h 10.1039/D1LC00636C 10.1039/C8LC00236C 10.1109/TBCAS.2021.3136165 10.3390/mi10090593 10.3390/mi11080774 10.1039/C5LC01353D 10.1016/j.bios.2011.06.016 10.1007/s10404-021-02477-0 10.1038/nrd1985 10.1039/c2lc41102d 10.1039/C4LC00937A 10.1039/C9LC00684B 10.1021/acs.analchem.9b01998 10.1002/adma.200900821 10.3390/mi12050482 10.1039/C2LC20911J 10.3389/fbioe.2020.602659 10.1016/j.copbio.2018.08.002 10.1101/2021.07.29.454194 10.1039/C9LC00276F 10.1007/s00216-010-3721-9 10.1016/j.snb.2018.03.051 10.1073/pnas.1504484112 10.1016/j.snb.2014.09.004 10.1007/s13534-019-00144-6 10.1038/nature05063 10.1039/D0LC00783H 10.1007/s10404-010-0611-6 10.3390/mi7120225 10.1038/nprot.2017.125 10.1016/j.sna.2021.113047 10.1039/D1LC00684C 10.1063/1.4826935 10.1016/j.snb.2012.03.001 10.1016/j.cej.2019.01.026 10.1002/elps.201300205 10.3390/bios12040220 10.1016/j.reactfunctpolym.2019.104314 10.1142/S2339547818300019 10.1039/C6LC01018K 10.23919/MIPRO55190.2022.9803371 10.3390/microorganisms7100381 10.1103/PhysRevLett.65.1317 10.1021/acssensors.9b01270 10.1063/1.4950753 10.1016/j.bej.2020.107783 10.3390/bios10040039 10.1039/C4LC01246A 10.1007/s10404-018-2046-4 10.1007/s13206-018-2401-2 10.1017/jfm.2020.532 10.1016/j.scitotenv.2021.152556 10.3390/mi10100653 10.1039/D1LC00067E 10.1063/1.4821315 10.1016/j.snb.2019.01.020 10.1039/C9LC00716D 10.1007/978-981-15-0489-1_1 10.5875/ausmt.v4i2.311 10.1039/C7LC01128H 10.1039/D1LC00266J 10.1016/j.bios.2021.113753 10.1063/1.4801637 10.1007/s10544-016-0109-4 10.1007/s40430-021-02971-0 10.1021/acssensors.1c01524 10.1088/0967-3334/26/3/R02 10.1002/elps.201800298 10.1021/acssensors.1c00864 10.1002/app.48958 10.1088/0022-3727/40/19/R01 10.1371/journal.pone.0175089 10.1002/elps.201900402 10.1016/j.trac.2022.116788 10.1201/9781315274164 10.1016/j.jsamd.2021.03.005 10.1016/j.memsci.2017.01.056 10.1101/2022.07.21.500785 10.1016/j.bios.2014.02.009 10.1016/j.talanta.2020.121844 10.1002/smll.201200996 10.1039/C5LC01012H 10.1039/C8LC01288A 10.1039/D2LC00213B 10.1002/biot.201700047 10.3390/ijms23041981 10.1088/1361-6439/aae773 10.1002/adhm.201801084 10.1007/s11892-020-01357-1 10.1038/srep24192 10.1016/j.snb.2016.02.085 10.1038/s41598-021-81661-2 10.3390/mi13030486 10.1002/jcp.27729 10.1016/j.bios.2021.113660 10.1063/5.0002169 10.3390/s18114011 10.3390/app11125329 10.1038/s41598-019-51464-7 10.1021/acssensors.1c00602 10.1063/1.5125264 10.1002/smll.201903916 10.1016/j.bios.2022.114100 10.1021/acsmacrolett.9b00921 10.1021/acs.analchem.7b02080 10.1039/b912213c 10.1007/s11517-010-0611-4 10.1063/1.3567094 10.1016/j.lwt.2021.112172 10.1088/0960-1317/12/4/324 10.1039/C8LC00458G 10.1038/s41598-020-65483-2 10.1039/b917763a 10.7554/eLife.59961 10.1039/C7CS00016B 10.1021/acs.analchem.8b03636 10.1016/j.ab.2013.02.007 10.1021/ar300314s |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T5 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU COVID DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/bios12110956 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-6374 |
ExternalDocumentID | oai_doaj_org_article_f6998bca3b7442acaf50cc09e437e316 PMC9688261 A745270706 36354465 10_3390_bios12110956 |
Genre | Journal Article Review |
GeographicLocations | Russia |
GeographicLocations_xml | – name: Russia |
GrantInformation_xml | – fundername: The Implementation Program Priority 2030 |
GroupedDBID | .4S .DC 2XV 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAYXX ABUWG ADBBV ADMLS AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM TUS UKHRP CGR CUY CVF ECM EIF NPM PMFND 3V. 7QL 7T5 7XB 8FK AZQEC C1K COVID DWQXO GNUQQ H94 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-2d94bb15c0f99d1ac942f9483334d5ffc52db77c3d19c81b365a9c34dc8091ef3 |
IEDL.DBID | M48 |
ISSN | 2079-6374 |
IngestDate | Wed Aug 27 01:32:46 EDT 2025 Thu Aug 21 18:39:17 EDT 2025 Thu Jul 10 18:40:51 EDT 2025 Fri Jul 25 11:54:48 EDT 2025 Tue Jun 10 21:02:18 EDT 2025 Thu Apr 03 07:03:28 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Tue Jul 01 02:24:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | point-of-care devices microfluidics active pumping methods lab-on-a-chip passive pumping methods lab-on-a-disk |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-2d94bb15c0f99d1ac942f9483334d5ffc52db77c3d19c81b365a9c34dc8091ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4860-9013 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/bios12110956 |
PMID | 36354465 |
PQID | 2734609237 |
PQPubID | 2032424 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f6998bca3b7442acaf50cc09e437e316 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9688261 proquest_miscellaneous_2735166473 proquest_journals_2734609237 gale_infotracacademiconefile_A745270706 pubmed_primary_36354465 crossref_citationtrail_10_3390_bios12110956 crossref_primary_10_3390_bios12110956 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biosensors (Basel) |
PublicationTitleAlternate | Biosensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Jackson (ref_13) 2017; 46 Essaouiba (ref_27) 2020; 164 ref_93 Zhang (ref_129) 2020; 13 Sierra (ref_89) 2021; 6 ref_14 Tehranirokh (ref_3) 2013; 7 Zhang (ref_110) 2021; 11 Khoo (ref_12) 2018; 13 ref_97 Gossett (ref_8) 2010; 397 Pawell (ref_9) 2013; 7 Mu (ref_22) 2013; 9 Sung (ref_69) 2010; 10 ref_17 ref_16 Han (ref_125) 2021; 21 Zimmermann (ref_79) 2007; 7 Marimuthu (ref_70) 2013; 437 Shrirao (ref_19) 2018; 6 Brassard (ref_121) 2019; 19 Li (ref_134) 2020; 9 Goy (ref_56) 2019; 145 Xu (ref_136) 2015; 9 ref_25 Scott (ref_124) 2019; 19 Lok (ref_62) 2012; 166–167 Kim (ref_95) 2018; 28 ref_28 Zhu (ref_116) 2017; 89 Xu (ref_106) 2020; 14 Weng (ref_43) 2021; 151 Wang (ref_98) 2018; 18 Gong (ref_20) 2019; 40 Park (ref_101) 2018; 18 Zeng (ref_92) 2022; 205 Christopher (ref_57) 2007; 40 Schimel (ref_99) 2021; 25 Sesen (ref_32) 2020; 10 Chakraborty (ref_48) 2020; 137 Hettiarachchi (ref_111) 2021; 332 Farahinia (ref_11) 2021; 6 Chuang (ref_96) 2019; 284 Zhang (ref_75) 2010; 9 Han (ref_58) 2021; 43 Zhao (ref_132) 2021; 21 Gao (ref_44) 2022; 157 Pandey (ref_35) 2018; 13 Chen (ref_131) 2021; 6 ref_82 Li (ref_36) 2019; 91 Li (ref_128) 2015; 112 Mittal (ref_24) 2019; 234 Liang (ref_94) 2017; 529 Xu (ref_15) 2020; 41 Veserat (ref_86) 2016; 16 Tay (ref_40) 2016; 34 ref_88 Roy (ref_50) 2011; 11 Lin (ref_41) 2020; 16 Zhang (ref_52) 2009; 50 Herrmann (ref_10) 2019; 13 Jiang (ref_2) 2016; 82 Olanrewaju (ref_78) 2018; 18 Lim (ref_91) 2022; 197 Li (ref_103) 2015; 15 Gervais (ref_135) 2011; 27 ref_54 ref_51 Bengtsson (ref_122) 2018; 22 Chong (ref_60) 2016; 16 Domachuk (ref_47) 2010; 22 Ozcelik (ref_130) 2021; 25 Ma (ref_53) 2019; 8 Chen (ref_105) 2021; 224 Dong (ref_5) 2016; 6 Shamloo (ref_118) 2021; 11 Singh (ref_33) 2002; 12 Stavrakis (ref_21) 2019; 55 Azizgolshani (ref_26) 2021; 21 Zhu (ref_4) 2012; 12 Gao (ref_71) 2019; 362 Han (ref_126) 2019; 19 ref_67 ref_66 Abadpour (ref_29) 2020; 20 Chen (ref_117) 2019; 91 Sachdeva (ref_37) 2021; 8 Novo (ref_80) 2014; 57 Zhu (ref_59) 2017; 17 Korczyk (ref_76) 2013; 7 Goral (ref_68) 2013; 13 Gabrielse (ref_84) 1990; 65 Ren (ref_46) 2013; 46 Li (ref_104) 2013; 15 ref_113 ref_112 Hwu (ref_120) 2022; 22 Tachibana (ref_133) 2015; 206 Kao (ref_74) 2020; 20 ref_39 Byun (ref_77) 2014; 35 Xing (ref_85) 2016; 18 Huh (ref_23) 2005; 26 Kim (ref_31) 2018; 12 ref_38 Juncker (ref_107) 2002; 74 Reyes (ref_30) 2015; 15 Epifania (ref_81) 2018; 265 Zhu (ref_127) 2021; 15 Ballerini (ref_65) 2011; 5 Lynn (ref_63) 2009; 9 Calver (ref_87) 2020; 901 (ref_61) 2014; 4 Reis (ref_72) 2021; 6 Soares (ref_114) 2021; 21 Mavrogiannis (ref_64) 2016; 10 Shin (ref_73) 2016; 230 Gowda (ref_119) 2022; 813 Hu (ref_90) 2021; 21 Ahi (ref_83) 2022; 195 ref_108 Sia (ref_34) 2008; 8 Yen (ref_123) 2019; 9 ref_109 Bhagat (ref_6) 2010; 48 ref_100 ref_42 ref_102 Sorger (ref_1) 2006; 442 Dittrich (ref_45) 2006; 5 Li (ref_115) 2019; 4 Rajawat (ref_18) 2020; 10 ref_49 Cosson (ref_55) 2014; 4 ref_7 |
References_xml | – volume: 74 start-page: 6139 year: 2002 ident: ref_107 article-title: Autonomous Microfluidic Capillary System publication-title: Anal. Chem. doi: 10.1021/ac0261449 – volume: 15 start-page: 17 year: 2013 ident: ref_104 article-title: An optimized hollow microneedle for minimally invasive blood extraction publication-title: Biomed. Microdevices doi: 10.1007/s10544-012-9683-2 – volume: 82 start-page: 2210 year: 2016 ident: ref_2 article-title: High-Throughput Single-Cell Cultivation on Microfluidic Streak Plates publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03588-15 – volume: 11 start-page: 19189 year: 2021 ident: ref_110 article-title: Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism publication-title: Sci. Rep. doi: 10.1038/s41598-021-98655-9 – volume: 50 start-page: 5358 year: 2009 ident: ref_52 article-title: The fabrication of polymer microfluidic devices using a solid-to-solid interfacial polyaddition publication-title: Polymer doi: 10.1016/j.polymer.2009.09.053 – ident: ref_39 doi: 10.3390/mi11010067 – volume: 11 start-page: 3193 year: 2011 ident: ref_50 article-title: Thermoplastic elastomers for microfluidics: Towards a high-throughput fabrication method of multilayered microfluidic devices publication-title: Lab Chip doi: 10.1039/c1lc20251k – volume: 4 start-page: 4462 year: 2014 ident: ref_55 article-title: Hydrogel microfluidics for the patterning of pluripotent stem cells publication-title: Sci. Rep. doi: 10.1038/srep04462 – volume: 25 start-page: 5 year: 2021 ident: ref_130 article-title: A practical microfluidic pump enabled by acoustofluidics and 3D printing publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-020-02411-w – ident: ref_97 doi: 10.1109/MEMSYS.2011.5734629 – ident: ref_108 – volume: 13 start-page: 17 year: 2020 ident: ref_129 article-title: Acoustic Microfluidics publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-090919-102205 – volume: 9 start-page: 014106 year: 2015 ident: ref_136 article-title: Phaseguide-assisted blood separation microfluidic device for point-of-care applications publication-title: Biomicrofluidics doi: 10.1063/1.4906458 – volume: 7 start-page: 119 year: 2007 ident: ref_79 article-title: Capillary pumps for autonomous capillary systems publication-title: Lab Chip doi: 10.1039/B609813D – ident: ref_25 doi: 10.20944/preprints201903.0031.v1 – volume: 34 start-page: 404 year: 2016 ident: ref_40 article-title: Advances in microfluidics in combating infectious diseases publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2016.02.002 – volume: 8 start-page: 1982 year: 2008 ident: ref_34 article-title: Microfluidics and point-of-care testing publication-title: Lab Chip doi: 10.1039/b817915h – volume: 21 start-page: 4716 year: 2021 ident: ref_90 article-title: A vacuum-assisted, highly parallelized microfluidic array for performing multi-step digital assays publication-title: Lab Chip doi: 10.1039/D1LC00636C – volume: 18 start-page: 2167 year: 2018 ident: ref_98 article-title: A hydrostatic pressure-driven passive micropump enhanced with siphon-based autofill function publication-title: Lab Chip doi: 10.1039/C8LC00236C – volume: 15 start-page: 1250 year: 2021 ident: ref_127 article-title: CMOS-Based Electrokinetic Microfluidics With Multi-Modal Cellular and Bio-Molecular Sensing for End-to-End Point-of-Care System publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2021.3136165 – ident: ref_7 doi: 10.3390/mi10090593 – ident: ref_14 doi: 10.3390/mi11080774 – volume: 16 start-page: 334 year: 2016 ident: ref_86 article-title: Surface-tension driven open microfluidic platform for hanging droplet culture publication-title: Lab Chip doi: 10.1039/C5LC01353D – volume: 27 start-page: 64 year: 2011 ident: ref_135 article-title: Capillary-driven multiparametric microfluidic chips for one-step immunoassays publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.06.016 – volume: 25 start-page: 78 year: 2021 ident: ref_99 article-title: Pressure-driven generation of complex microfluidic droplet networks publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-021-02477-0 – volume: 5 start-page: 210 year: 2006 ident: ref_45 article-title: Lab-on-a-chip: Microfluidics in drug discovery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1985 – volume: 13 start-page: 1039 year: 2013 ident: ref_68 article-title: A continuous perfusion microplate for cell culture publication-title: Lab Chip doi: 10.1039/c2lc41102d – volume: 15 start-page: 382 year: 2015 ident: ref_103 article-title: A self-powered one-touch blood extraction system: A novel polymer-capped hollow microneedle integrated with a pre-vacuum actuator publication-title: Lab Chip doi: 10.1039/C4LC00937A – volume: 20 start-page: 54 year: 2020 ident: ref_74 article-title: Gravity-driven microfluidic assay for digital enumeration of bacteria and for antibiotic susceptibility testing publication-title: Lab Chip doi: 10.1039/C9LC00684B – volume: 91 start-page: 7958 year: 2019 ident: ref_117 article-title: Rapid and Automated Detection of Six Contaminants in Milk Using a Centrifugal Microfluidic Platform with Two Rotation Axes publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b01998 – volume: 22 start-page: 249 year: 2010 ident: ref_47 article-title: Bio-microfluidics: Biomaterials and Biomimetic Designs publication-title: Adv. Mater. doi: 10.1002/adma.200900821 – ident: ref_93 doi: 10.3390/mi12050482 – volume: 12 start-page: 906 year: 2012 ident: ref_4 article-title: Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells publication-title: Lab Chip doi: 10.1039/C2LC20911J – volume: 8 start-page: 602659 year: 2021 ident: ref_37 article-title: Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.602659 – volume: 55 start-page: 36 year: 2019 ident: ref_21 article-title: High-throughput microfluidic imaging flow cytometry publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2018.08.002 – ident: ref_88 doi: 10.1101/2021.07.29.454194 – volume: 19 start-page: 1941 year: 2019 ident: ref_121 article-title: Extraction of nucleic acids from blood: Unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes publication-title: Lab Chip doi: 10.1039/C9LC00276F – volume: 397 start-page: 3249 year: 2010 ident: ref_8 article-title: Label-free cell separation and sorting in microfluidic systems publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-010-3721-9 – volume: 265 start-page: 452 year: 2018 ident: ref_81 article-title: Capillary-driven microfluidic device with integrated nanoporous microbeads for ultrarapid biosensing assays publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.03.051 – volume: 112 start-page: 4970 year: 2015 ident: ref_128 article-title: Acoustic separation of circulating tumor cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1504484112 – volume: 206 start-page: 303 year: 2015 ident: ref_133 article-title: Self-propelled continuous-flow PCR in capillary-driven microfluidic device: Microfluidic behavior and DNA amplification publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.09.004 – volume: 10 start-page: 241 year: 2020 ident: ref_18 article-title: Disease diagnostics using hydrodynamic flow focusing in microfluidic devices: Beyond flow cytometry publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-019-00144-6 – volume: 442 start-page: 403 year: 2006 ident: ref_1 article-title: Cells on chips publication-title: Nature doi: 10.1038/nature05063 – volume: 21 start-page: 184 year: 2021 ident: ref_125 article-title: Integrated microfluidic platform with electrohydrodynamic focusing and a carbon-nanotube-based field-effect transistor immunosensor for continuous, selective, and label-free quantification of bacteria publication-title: Lab Chip doi: 10.1039/D0LC00783H – volume: 9 start-page: 995 year: 2010 ident: ref_75 article-title: A gravity-actuated technique for flexible and portable microfluidic droplet manipulation publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-010-0611-6 – ident: ref_49 doi: 10.3390/mi7120225 – volume: 13 start-page: 34 year: 2018 ident: ref_12 article-title: Expansion of patient-derived circulating tumor cells from liquid biopsies using a CTC microfluidic culture device publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.125 – volume: 332 start-page: 113047 year: 2021 ident: ref_111 article-title: Design and development of a microfluidic droplet generator with vision sensing for lab-on-a-chip devices publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2021.113047 – volume: 21 start-page: 4005 year: 2021 ident: ref_132 article-title: On-chip rapid drug screening of leukemia cells by acoustic streaming publication-title: Lab Chip doi: 10.1039/D1LC00684C – volume: 7 start-page: 051502 year: 2013 ident: ref_3 article-title: Microfluidic devices for cell cultivation and proliferation publication-title: Biomicrofluidics doi: 10.1063/1.4826935 – volume: 166–167 start-page: 893 year: 2012 ident: ref_62 article-title: Ferrofluid plug as valve and actuator for whole-cell PCR on chip publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.03.001 – volume: 362 start-page: 169 year: 2019 ident: ref_71 article-title: Droplet microfluidics with gravity-driven overflow system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.026 – volume: 35 start-page: 245 year: 2014 ident: ref_77 article-title: Pumps for microfluidic cell culture publication-title: Electrophoresis doi: 10.1002/elps.201300205 – ident: ref_17 doi: 10.3390/bios12040220 – volume: 145 start-page: 104314 year: 2019 ident: ref_56 article-title: Microfluidics and hydrogel: A powerful combination publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2019.104314 – volume: 6 start-page: 1 year: 2018 ident: ref_19 article-title: Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification publication-title: Technology doi: 10.1142/S2339547818300019 – volume: 17 start-page: 34 year: 2017 ident: ref_59 article-title: Passive and active droplet generation with microfluidics: A review publication-title: Lab Chip doi: 10.1039/C6LC01018K – ident: ref_112 doi: 10.23919/MIPRO55190.2022.9803371 – ident: ref_42 doi: 10.3390/microorganisms7100381 – volume: 65 start-page: 1317 year: 1990 ident: ref_84 article-title: Thousandfold improvement in the measured antiproton mass publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.1317 – volume: 4 start-page: 2738 year: 2019 ident: ref_115 article-title: Sample-to-Answer Hepatitis B Virus DNA Detection from Whole Blood on a Centrifugal Microfluidic Platform with Double Rotation Axes publication-title: ACS Sens. doi: 10.1021/acssensors.9b01270 – volume: 10 start-page: 034107 year: 2016 ident: ref_64 article-title: Microfluidics made easy: A robust low-cost constant pressure flow controller for engineers and cell biologists publication-title: Biomicrofluidics doi: 10.1063/1.4950753 – volume: 164 start-page: 107783 year: 2020 ident: ref_27 article-title: Development of a pancreas-liver organ-on-chip coculture model for organ-to-organ interaction studies publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2020.107783 – ident: ref_82 doi: 10.3390/bios10040039 – volume: 15 start-page: 1230 year: 2015 ident: ref_30 article-title: Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation publication-title: Lab Chip doi: 10.1039/C4LC01246A – volume: 22 start-page: 27 year: 2018 ident: ref_122 article-title: A clip-on electroosmotic pump for oscillating flow in microfluidic cell culture devices publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-018-2046-4 – volume: 12 start-page: 257 year: 2018 ident: ref_31 article-title: Inertial Microfluidics-Based Cell Sorting publication-title: BioChip J. doi: 10.1007/s13206-018-2401-2 – volume: 901 start-page: A6 year: 2020 ident: ref_87 article-title: On the thin-film asymptotics of surface tension driven microfluidics publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.532 – volume: 813 start-page: 152556 year: 2022 ident: ref_119 article-title: Development of a proof-of-concept microfluidic portable pathogen analysis system for water quality monitoring publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.152556 – ident: ref_100 doi: 10.3390/mi10100653 – volume: 21 start-page: 1454 year: 2021 ident: ref_26 article-title: High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows publication-title: Lab Chip doi: 10.1039/D1LC00067E – volume: 7 start-page: 056501 year: 2013 ident: ref_9 article-title: Manufacturing and wetting low-cost microfluidic cell separation devices publication-title: Biomicrofluidics doi: 10.1063/1.4821315 – volume: 284 start-page: 736 year: 2019 ident: ref_96 article-title: Bio-O-Pump: A novel portable microfluidic device driven by osmotic pressure publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.01.020 – volume: 19 start-page: 3834 year: 2019 ident: ref_124 article-title: Automated microchannel alignment using innate opto-signature for microchip electrophoresis publication-title: Lab Chip doi: 10.1039/C9LC00716D – ident: ref_54 doi: 10.1007/978-981-15-0489-1_1 – volume: 4 start-page: 77 year: 2014 ident: ref_61 article-title: A Magnetic Micropump Based on Ferrofluidic Actuation publication-title: Int. J. Autom. Smart Technol. doi: 10.5875/ausmt.v4i2.311 – volume: 18 start-page: 1215 year: 2018 ident: ref_101 article-title: Finger-actuated microfluidic device for the blood cross-matching test publication-title: Lab Chip doi: 10.1039/C7LC01128H – volume: 21 start-page: 2932 year: 2021 ident: ref_114 article-title: Sample-to-answer COVID-19 nucleic acid testing using a low-cost centrifugal microfluidic platform with bead-based signal enhancement and smartphone read-out publication-title: Lab Chip doi: 10.1039/D1LC00266J – volume: 197 start-page: 113753 year: 2022 ident: ref_91 article-title: Microfluidic device for one-step detection of breast cancer-derived exosomal mRNA in blood using signal-amplifiable 3D nanostructure publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113753 – volume: 7 start-page: 024108 year: 2013 ident: ref_76 article-title: Block-and-break generation of microdroplets with fixed volume publication-title: Biomicrofluidics doi: 10.1063/1.4801637 – volume: 18 start-page: 80 year: 2016 ident: ref_85 article-title: A pumpless microfluidic device driven by surface tension for pancreatic islet analysis publication-title: Biomed. Microdevices doi: 10.1007/s10544-016-0109-4 – volume: 43 start-page: 247 year: 2021 ident: ref_58 article-title: A review on microdroplet generation in microfluidics publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-021-02971-0 – volume: 6 start-page: 4338 year: 2021 ident: ref_72 article-title: Gravity-Driven Microfluidic Siphons: Fluidic Characterization and Application to Quantitative Immunoassays publication-title: ACS Sens. doi: 10.1021/acssensors.1c01524 – volume: 26 start-page: R73 year: 2005 ident: ref_23 article-title: Microfluidics for flow cytometric analysis of cells and particles publication-title: Physiol. Meas. doi: 10.1088/0967-3334/26/3/R02 – volume: 40 start-page: 1212 year: 2019 ident: ref_20 article-title: New advances in microfluidic flow cytometry publication-title: Electrophoresis doi: 10.1002/elps.201800298 – volume: 6 start-page: 2998 year: 2021 ident: ref_89 article-title: Pump-Free Microfluidic Device for the Electrochemical Detection of α 1 -Acid Glycoprotein publication-title: ACS Sens. doi: 10.1021/acssensors.1c00864 – volume: 137 start-page: 48958 year: 2020 ident: ref_48 article-title: PDMS microfluidics: A mini review publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.48958 – volume: 40 start-page: R319 year: 2007 ident: ref_57 article-title: Microfluidic methods for generating continuous droplet streams publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/40/19/R01 – ident: ref_109 doi: 10.1371/journal.pone.0175089 – volume: 41 start-page: 933 year: 2020 ident: ref_15 article-title: Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis publication-title: Electrophoresis doi: 10.1002/elps.201900402 – volume: 157 start-page: 116788 year: 2022 ident: ref_44 article-title: Recent advances in microfluidic devices for foodborne pathogens detection publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2022.116788 – ident: ref_67 doi: 10.1201/9781315274164 – volume: 6 start-page: 303 year: 2021 ident: ref_11 article-title: Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: A review publication-title: J. Sci. Adv. Mater. Devices doi: 10.1016/j.jsamd.2021.03.005 – volume: 529 start-page: 47 year: 2017 ident: ref_94 article-title: Forward osmosis membranes with unprecedented water flux publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.01.056 – ident: ref_113 doi: 10.1101/2022.07.21.500785 – volume: 57 start-page: 284 year: 2014 ident: ref_80 article-title: Integrated optical detection of autonomous capillary microfluidic immunoassays:a hand-held point-of-care prototype publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.02.009 – volume: 224 start-page: 121844 year: 2021 ident: ref_105 article-title: Integrated and finger-actuated microfluidic chip for point-of-care testing of multiple pathogens publication-title: Talanta doi: 10.1016/j.talanta.2020.121844 – volume: 9 start-page: 9 year: 2013 ident: ref_22 article-title: Microfluidics for Manipulating Cells publication-title: Small doi: 10.1002/smll.201200996 – volume: 16 start-page: 35 year: 2016 ident: ref_60 article-title: Active droplet generation in microfluidics publication-title: Lab Chip doi: 10.1039/C5LC01012H – volume: 19 start-page: 1772 year: 2019 ident: ref_126 article-title: Two-dimensional computational method for generating planar electrode patterns with enhanced volumetric electric fields and its application to continuous dielectrophoretic bacterial capture publication-title: Lab Chip doi: 10.1039/C8LC01288A – ident: ref_66 – volume: 22 start-page: 2695 year: 2022 ident: ref_120 article-title: Centrifugal disc liquid reciprocation flow considerations for antibody binding to COVID antigen array during microfluidic integration publication-title: Lab Chip doi: 10.1039/D2LC00213B – volume: 13 start-page: 1700047 year: 2018 ident: ref_35 article-title: Microfluidics Based Point-of-Care Diagnostics publication-title: Biotechnol. J. doi: 10.1002/biot.201700047 – ident: ref_16 doi: 10.3390/ijms23041981 – volume: 28 start-page: 125005 year: 2018 ident: ref_95 article-title: Stand-alone external power-free microfluidic fuel cell system harnessing osmotic pump for long-term operation publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aae773 – volume: 8 start-page: 1801084 year: 2019 ident: ref_53 article-title: Paper Microfluidics for Cell Analysis publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201801084 – volume: 20 start-page: 72 year: 2020 ident: ref_29 article-title: Pancreas-on-a-Chip Technology for Transplantation Applications publication-title: Curr. Diabetes Rep. doi: 10.1007/s11892-020-01357-1 – volume: 6 start-page: 24192 year: 2016 ident: ref_5 article-title: Automated Chemotactic Sorting and Single-cell Cultivation of Microbes using Droplet Microfluidics publication-title: Sci. Rep. doi: 10.1038/srep24192 – volume: 230 start-page: 380 year: 2016 ident: ref_73 article-title: A stand-alone pressure-driven 3D microfluidic chemical sensing analytic device publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.02.085 – volume: 11 start-page: 1939 year: 2021 ident: ref_118 article-title: Cancer cell enrichment on a centrifugal microfluidic platform using hydrodynamic and magnetophoretic techniques publication-title: Sci. Rep. doi: 10.1038/s41598-021-81661-2 – ident: ref_51 doi: 10.3390/mi13030486 – volume: 234 start-page: 8352 year: 2019 ident: ref_24 article-title: Organ-on-chip models: Implications in drug discovery and clinical applications publication-title: J. Cell. Physiol. doi: 10.1002/jcp.27729 – volume: 195 start-page: 113660 year: 2022 ident: ref_83 article-title: A capillary driven microfluidic chip for SERS based hCG detection publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113660 – volume: 14 start-page: 031503 year: 2020 ident: ref_106 article-title: Passive micropumping in microfluidics for point-of-care testing publication-title: Biomicrofluidics doi: 10.1063/5.0002169 – ident: ref_38 doi: 10.3390/s18114011 – ident: ref_102 doi: 10.3390/app11125329 – volume: 9 start-page: 14794 year: 2019 ident: ref_123 article-title: A Low-Power CMOS Microfluidic Pump Based on Travelling-Wave Electroosmosis for Diluted Serum Pumping publication-title: Sci. Rep. doi: 10.1038/s41598-019-51464-7 – volume: 6 start-page: 2386 year: 2021 ident: ref_131 article-title: Mixing during Trapping Enabled a Continuous-Flow Microfluidic Smartphone Immunoassay Using Acoustic Streaming publication-title: ACS Sens. doi: 10.1021/acssensors.1c00602 – volume: 13 start-page: 061501 year: 2019 ident: ref_10 article-title: Spiral microfluidic devices for cell separation and sorting in bioprocesses publication-title: Biomicrofluidics doi: 10.1063/1.5125264 – volume: 16 start-page: 1903916 year: 2020 ident: ref_41 article-title: Progress in Microfluidics-Based Exosome Separation and Detection Technologies for Diagnostic Applications publication-title: Small doi: 10.1002/smll.201903916 – volume: 205 start-page: 114100 year: 2022 ident: ref_92 article-title: Hand-powered vacuum-driven microfluidic gradient generator for high-throughput antimicrobial susceptibility testing publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2022.114100 – volume: 9 start-page: 328 year: 2020 ident: ref_134 article-title: Capillary Microfluidic-Assisted Surface Structuring publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.9b00921 – volume: 89 start-page: 9315 year: 2017 ident: ref_116 article-title: Comprehensive Study of the Flow Control Strategy in a Wirelessly Charged Centrifugal Microfluidic Platform with Two Rotation Axes publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b02080 – volume: 9 start-page: 3422 year: 2009 ident: ref_63 article-title: Passive microfluidic pumping using coupled capillary/evaporation effects publication-title: Lab Chip doi: 10.1039/b912213c – volume: 48 start-page: 999 year: 2010 ident: ref_6 article-title: Microfluidics for cell separation publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-010-0611-4 – volume: 5 start-page: 014105 year: 2011 ident: ref_65 article-title: Flow control concepts for thread-based microfluidic devices publication-title: Biomicrofluidics doi: 10.1063/1.3567094 – volume: 151 start-page: 112172 year: 2021 ident: ref_43 article-title: Advances in microfluidic nanobiosensors for the detection of foodborne pathogens publication-title: LWT doi: 10.1016/j.lwt.2021.112172 – volume: 12 start-page: 486 year: 2002 ident: ref_33 article-title: Development of a microfluidic device for fluorescence activated cell sorting publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/12/4/324 – volume: 18 start-page: 2323 year: 2018 ident: ref_78 article-title: Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits publication-title: Lab Chip doi: 10.1039/C8LC00458G – volume: 10 start-page: 8736 year: 2020 ident: ref_32 article-title: Image-Based Single Cell Sorting Automation in Droplet Microfluidics publication-title: Sci. Rep. doi: 10.1038/s41598-020-65483-2 – volume: 10 start-page: 446 year: 2010 ident: ref_69 article-title: A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip publication-title: Lab Chip doi: 10.1039/b917763a – ident: ref_28 doi: 10.7554/eLife.59961 – volume: 46 start-page: 4245 year: 2017 ident: ref_13 article-title: Materials and microfluidics: Enabling the efficient isolation and analysis of circulating tumour cells publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00016B – volume: 91 start-page: 352 year: 2019 ident: ref_36 article-title: Paper Microfluidics for Point-of-Care Blood-Based Analysis and Diagnostics publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b03636 – volume: 437 start-page: 161 year: 2013 ident: ref_70 article-title: Pumpless steady-flow microfluidic chip for cell culture publication-title: Anal. Biochem. doi: 10.1016/j.ab.2013.02.007 – volume: 46 start-page: 2396 year: 2013 ident: ref_46 article-title: Materials for Microfluidic Chip Fabrication publication-title: Acc. Chem. Res. doi: 10.1021/ar300314s |
SSID | ssj0000747937 |
Score | 2.4576817 |
SecondaryResourceType | review_article |
Snippet | This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 956 |
SubjectTerms | active pumping methods Analysis Biochips Control systems Efficiency Flow control Geometry Gravity Health aspects Humans lab-on-a-chip Lab-On-A-Chip Devices lab-on-a-disk Mechanical systems Methods Microfluidic Analytical Techniques Microfluidic devices Microfluidics Microfluidics - methods Multitasking passive pumping methods Personal computers point-of-care devices Polymerization Porous materials Reagents Review Reynolds number Smartphone Viscosity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yJz2I31ZXiaB4kLJt85I03saPYRFm8eDC3kL6krADQ0d2Zvz7fUm7Q4uIF49t3iF93695-T3G3jqkMBAbKIMAV4IiWTiyqdLHiqJfjaB8OtFdXajzS_h2Ja8mo75ST9gADzww7iwqKgg6dKLTAI1DF2WFWJkAQgdRZ7BtinmTYir7YJ3-GOmh011QXX_Wrbe7BGeWgPdmMShD9f_pkCcRad4tOQk_ywfs_pg38sWw34fsTugfsXsTNMHHbHmx_RU2_DsJiJ75Ks-G3nHKSvkqtd3FzWHt18i_hOwdPvIFT97gJlwPTex8OCd4wi6XX398Pi_HMQklylrvy8Yb6LpaYhWN8bVDA0000AohwMsYUTa-0xqFrw1SliqUdAZpDVtiXIjiKTvpt314zjiYGLwK2LQtgGudCa2MgZI4F4Ck5wv24ZZxFkcM8TTKYmOplkhstlM2F-zdkfrngJ3xF7pPSQZHmoR4nV-QHthRD-y_9KBg75MEbbJL2hK68XoBfVhCuLILDbLR5OCI8vRWyHY02J1NKD-qomxXF-zNcZlMLZ2fuD5sD5lG1kqBFgV7NujEcc-CEreEPVcwPdOW2UfNV_r1dYbzNmQgVMe--B9ceMnuNul-Rr4secpO9jeH8Iqypn33OhvIb9x4FmY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96vuiD-G31lAiKD1KubZKm8UXWj-UQ9vDBg30r6STxFpb23A__fmfSbt0i-thmKGnmM5nJbxh7bQHdQChk6oW0qSyRFxZ1KnUhQ--XgywdZXQXF-X5pfy6VMvhwG07lFUebGI01K4DOiM_IxiWMsNwRH-4_plS1yjKrg4tNG6yWwRdRlKtl3o8YyFweHS_fb27wN39WbPqtgRqRvB7E08UAfv_NstHfmlaM3nkhOb32N0heuSznt332Q3fPmB3jjAFH7L5RffLr_k3ZBM-80XsEL3lGJvyBRXfhfV-5VbAP_toI97zGSebsPFXfSk777MFj9jl_Mv3T-fp0CwhBZXrXVo4I5smV5AFY1xuwcgiGFkJIaRTIYAqXKM1CJcbwFhVlMoawDGoMGTwQTxmJ23X-qeMSxO8Kz0UVSWlrazxlQoeQznrJfLQJezdYeFqGJDEqaHFusYdBS1zfbzMCXszUl_3CBr_oPtIPBhpCPc6vug2P-pBjepQ4vawASsaLWVhwQaVAWTGS6G9yPEjb4mDNWknTgnscMkAf4xwruqZlqrQaOaQ8vTA5HpQ2239R8gS9mocRoWjLIptfbePNCovS6lFwp70MjHOWWD4Rgh0CdMTaZn81HSkXV1FUG-DaoK72Wf_n9Zzdrug-xfxMuQpO9lt9v4FRkW75mUU_d-i2A1y priority: 102 providerName: ProQuest |
Title | Novel Pumping Methods for Microfluidic Devices: A Comprehensive Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36354465 https://www.proquest.com/docview/2734609237 https://www.proquest.com/docview/2735166473 https://pubmed.ncbi.nlm.nih.gov/PMC9688261 https://doaj.org/article/f6998bca3b7442acaf50cc09e437e316 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD7sBWR9EO9W1yGC4oPUbZukaQSRWd1hEWZYxIF5K2ku7sDQ6lxE_70naWeYsvriY5uT0uTcc_kOwEul0Q24jMWWMhWzHHmhUKdi4xL0fqlmufE7uuNJfjlln2d8dgDbaqPdBK7-mtr5elLT5eLtrx-_P6DCv_cZJ6bsZ9W8WXmkMo-pdwjH6JOEr2Uw7gL9YJOFX0ES7cn3G51O4BZFx-uxw3ruKaD437TVe86qf5ByzzON7sKdLqQkw1YG7sGBre_D7T2gwQcwmjQ_7YJcIe_wmYxD2egVwYCVjP2JPLfYzM1ck082GI53ZEi8oVja6_Z8O2m3EB7CdHTx9eNl3FVQiDVPxTrOjGRVlXKdOClNqrRkmZOsoJQyw53TPDOVEJqaVGoMYGnOldTYpguMI6yjj-Cobmr7BAiTzprc6qwoGFOFkrbgzmJ8pyxDxpoI3mwnrtQdvLivcrEoMc3wM17uz3gEr3bU31tYjX_QnXse7Gg8GHZ40Sy_lZ1ulS7HnLHSilaCsUxp5XiidSIto8LSFD_y2nOw9EKEv6RVd_MAB-bBr8qhYDwTaPuQ8nTL5HIriqUHAMoTDIRFBC92zaiFfmtF1bbZBBqe5jkTNILHrUzs_nkrWhGInrT0BtVvqefXAelbou5givv0v3s-g5PM39cIlydP4Wi93NjnGEWtqwEcipkYwPH5xeTqyyCsRQyC0vwBMtcg4w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJuFAkai4oCiJrYTx0gILZTVlnZXHFppb6njB11plZR9gPhT_EZm8mIjBLceE48ix_O2x98Q8kobcAOeicBxoQORAC806FRgfQjeLzIisXiiO5km4zPxeRbPdsiv9i4MllW2NrEy1LY0uEd-gDAsSQjhiHx_-S3ArlF4utq20KjF4tj9_AEp2-rd0SHwd5-x0afTj-Og6SoQmDiS64BZJfI8ik3olbKRNkowr0TKORc29t7EzOZSGm4jZSCo40mslYExk4JvdZ7Dd6-R6-B4Q0z25Ex2ezoIRg_uvq6v51yFB_m8XCGIGsL99Txf1SDgbzew5Qf7NZpbTm90h9xuolU6rMXrLtlxxT1yawvD8D4ZTcvvbkG_gFjAM51UHalXFGJhOsFiP7_YzO3c0ENX2aS3dEjRBi3dRV06T-vTiQfk7EqW8SHZLcrCPSZUKO9s4gxLUyF0qpVLY-8gdNROgMzYAXnTLlxmGuRybKCxyCCDwWXOtpd5QPY76ssaseMfdB-QBx0N4mxXL8rl16xR28wnkI7mRvNcCsG00T4OjQmVE1w6HsFHXiMHM7QGMCWjm0sN8GOIq5UNpYiZBLMKlHstk7PGTKyyP0I9IC-7YVBwPLXRhSs3FU0cJYmQfEAe1TLRzZlDuIiIdwMie9LS-6n-SDG_qEDEFaglZM9P_j-tF-TG-HRykp0cTY-fkpsM735UFzH3yO56uXHPICJb588rNaDk_Kr17jf7qkqP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXGnMMBITDygqEnsxDESQh1dtTFaVYhJewuOL1ulqtl6AfHX-HWck6SlFYK3PSY-ihyfu338HYDX2qAb8LEIHBc6ECnyQqNOBdaH6P0iI1JLJ7qDYXp0Kj6dJWc78Gt1F4bKKlc2sTLUtjS0R94hGJY0xHBEdnxTFjHq9T9cXgXUQYpOWlftNGoROXE_f2D6Nn9_3ENe78dx__Drx6Og6TAQmCSSiyC2ShRFlJjQK2UjbZSIvRIZ51zYxHuTxLaQ0nAbKYMBHk8TrQyOmQz9rPMcv3sDdiVlRS3YPTgcjr6sd3gImh6df11tz7kKO8W4nBOkGoH_bfnBql3A305hwytuV2xuuMD-XbjTxK6sWwvbPdhx0_twewPR8AH0h-V3N2EjFBJ8ZoOqP_WcYWTMBlT65yfLsR0b1nOVhXrHuows0sxd1IX0rD6reAin17KQj6A1LafuCTChvLOpM3GWCaEzrVyWeIeBpHYCJci24e1q4XLT4JhTO41JjvkMLXO-ucxt2F9TX9b4Hf-gOyAerGkIdbt6Uc7O80aJc59icloYzQspRKyN9kloTKic4NLxCD_yhjiYk23AKRndXHHAHyOUrbwrRRJLNLJIubdict4YjXn-R8Tb8Go9jOpOZzh66splRZNEaSokb8PjWibWc-YYPBL-XRvklrRs_dT2yHR8UUGKK1RSzKWf_n9aL-Em6lz--Xh48gxuxXQRpLqVuQetxWzpnmN4tiheNHrA4Nt1q95v2sJQKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Pumping+Methods+for+Microfluidic+Devices%3A+A+Comprehensive+Review&rft.jtitle=Biosensors+%28Basel%29&rft.au=Iakovlev%2C+Aleksei+P.&rft.au=Erofeev%2C+Alexander+S.&rft.au=Gorelkin%2C+Petr+V.&rft.date=2022-11-01&rft.pub=MDPI&rft.eissn=2079-6374&rft.volume=12&rft.issue=11&rft_id=info:doi/10.3390%2Fbios12110956&rft_id=info%3Apmid%2F36354465&rft.externalDocID=PMC9688261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6374&client=summon |