Novel Pumping Methods for Microfluidic Devices: A Comprehensive Review

This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is...

Full description

Saved in:
Bibliographic Details
Published inBiosensors (Basel) Vol. 12; no. 11; p. 956
Main Authors Iakovlev, Aleksei P., Erofeev, Alexander S., Gorelkin, Petr V.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.11.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and “multitasking”. These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology.
AbstractList This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and “multitasking”. These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology.
This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and "multitasking". These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology.This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and "multitasking". These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology.
Audience Academic
Author Erofeev, Alexander S.
Iakovlev, Aleksei P.
Gorelkin, Petr V.
AuthorAffiliation Research Laboratory of Biophysics, National University of Science and Technology «MISiS», 119049 Moscow, Russia
AuthorAffiliation_xml – name: Research Laboratory of Biophysics, National University of Science and Technology «MISiS», 119049 Moscow, Russia
Author_xml – sequence: 1
  givenname: Aleksei P.
  surname: Iakovlev
  fullname: Iakovlev, Aleksei P.
– sequence: 2
  givenname: Alexander S.
  surname: Erofeev
  fullname: Erofeev, Alexander S.
– sequence: 3
  givenname: Petr V.
  orcidid: 0000-0002-4860-9013
  surname: Gorelkin
  fullname: Gorelkin, Petr V.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36354465$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhi1URD_ojTNaiQsHUvztNQekKFCo1AJCcLa8s3biaHcd7N2g_nsc0qK0wj7YmnnmtV-PT9HREAeH0AuCLxjT-G0TYiaUEKyFfIJOKFZ6JpniRwf7Y3Se8xqXobjSTD1Dx0wywbkUJ-jyS9y6rvo29ZswLKsbN65imysfU3UTIEXfTaENUH1w2wAuv6vm1SL2m-RWbshh66rvJeF-P0dPve2yO79bz9DPy48_Fp9n118_XS3m1zMQRI0z2mreNEQA9lq3xILm1GteM8Z4K7wHQdtGKWAt0VCThklhNZQc1FgT59kZutrrttGuzSaF3qZbE20wfwMxLY1NY4DOGS-1rhuwrFGcUwvWCwyAteNMOUZk0Xq_19pMTe9acMOYbPdA9GFmCCuzjFujZV1TSYrA6zuBFH9NLo-mDxlc19nBxSkbqpggUnLFCvrqEbqOUxrKU-0oLrGmTBXqYk8tbTEQBh_LuVBm6_oApfM-lPhccUEVVnhn4eWhhX93v-9vAegeKK3MOTlvIIx2DHHnKHSGYLP7R-bwH5WiN4-K7nX_i_8BsvnINA
CitedBy_id crossref_primary_10_1515_nanoph_2023_0301
crossref_primary_10_1016_j_aca_2023_341634
crossref_primary_10_1007_s13206_024_00141_7
crossref_primary_10_1038_s41467_024_46928_y
crossref_primary_10_2196_62770
crossref_primary_10_3390_mi15040465
crossref_primary_10_1002_smll_202404685
crossref_primary_10_1016_j_tifs_2023_04_010
crossref_primary_10_1007_s12195_024_00817_y
crossref_primary_10_3390_bioengineering10080902
crossref_primary_10_3390_molecules29020398
crossref_primary_10_1016_j_bios_2024_117122
crossref_primary_10_1080_17425255_2024_2362183
crossref_primary_10_1007_s42452_024_06103_w
crossref_primary_10_3390_mi15121524
crossref_primary_10_1016_j_aca_2023_341342
crossref_primary_10_1016_j_cjph_2025_01_033
crossref_primary_10_1088_1361_6439_ad983c
crossref_primary_10_3390_ijms241612699
crossref_primary_10_1002_smll_202402499
crossref_primary_10_1007_s10544_024_00709_y
crossref_primary_10_1016_j_bprint_2024_e00371
crossref_primary_10_1016_j_microc_2024_111819
crossref_primary_10_3390_en17236157
crossref_primary_10_1021_acs_analchem_4c00142
crossref_primary_10_1002_jssc_202300373
crossref_primary_10_3389_fbioe_2024_1355768
crossref_primary_10_1016_j_hoc_2024_04_004
crossref_primary_10_3389_fmed_2024_1452298
crossref_primary_10_1007_s44371_025_00133_y
crossref_primary_10_1016_j_xphs_2024_04_001
crossref_primary_10_1039_D4LC00489B
crossref_primary_10_1016_j_mtbio_2024_101048
Cites_doi 10.1021/ac0261449
10.1007/s10544-012-9683-2
10.1128/AEM.03588-15
10.1038/s41598-021-98655-9
10.1016/j.polymer.2009.09.053
10.3390/mi11010067
10.1039/c1lc20251k
10.1038/srep04462
10.1007/s10404-020-02411-w
10.1109/MEMSYS.2011.5734629
10.1146/annurev-anchem-090919-102205
10.1063/1.4906458
10.1039/B609813D
10.20944/preprints201903.0031.v1
10.1016/j.biotechadv.2016.02.002
10.1039/b817915h
10.1039/D1LC00636C
10.1039/C8LC00236C
10.1109/TBCAS.2021.3136165
10.3390/mi10090593
10.3390/mi11080774
10.1039/C5LC01353D
10.1016/j.bios.2011.06.016
10.1007/s10404-021-02477-0
10.1038/nrd1985
10.1039/c2lc41102d
10.1039/C4LC00937A
10.1039/C9LC00684B
10.1021/acs.analchem.9b01998
10.1002/adma.200900821
10.3390/mi12050482
10.1039/C2LC20911J
10.3389/fbioe.2020.602659
10.1016/j.copbio.2018.08.002
10.1101/2021.07.29.454194
10.1039/C9LC00276F
10.1007/s00216-010-3721-9
10.1016/j.snb.2018.03.051
10.1073/pnas.1504484112
10.1016/j.snb.2014.09.004
10.1007/s13534-019-00144-6
10.1038/nature05063
10.1039/D0LC00783H
10.1007/s10404-010-0611-6
10.3390/mi7120225
10.1038/nprot.2017.125
10.1016/j.sna.2021.113047
10.1039/D1LC00684C
10.1063/1.4826935
10.1016/j.snb.2012.03.001
10.1016/j.cej.2019.01.026
10.1002/elps.201300205
10.3390/bios12040220
10.1016/j.reactfunctpolym.2019.104314
10.1142/S2339547818300019
10.1039/C6LC01018K
10.23919/MIPRO55190.2022.9803371
10.3390/microorganisms7100381
10.1103/PhysRevLett.65.1317
10.1021/acssensors.9b01270
10.1063/1.4950753
10.1016/j.bej.2020.107783
10.3390/bios10040039
10.1039/C4LC01246A
10.1007/s10404-018-2046-4
10.1007/s13206-018-2401-2
10.1017/jfm.2020.532
10.1016/j.scitotenv.2021.152556
10.3390/mi10100653
10.1039/D1LC00067E
10.1063/1.4821315
10.1016/j.snb.2019.01.020
10.1039/C9LC00716D
10.1007/978-981-15-0489-1_1
10.5875/ausmt.v4i2.311
10.1039/C7LC01128H
10.1039/D1LC00266J
10.1016/j.bios.2021.113753
10.1063/1.4801637
10.1007/s10544-016-0109-4
10.1007/s40430-021-02971-0
10.1021/acssensors.1c01524
10.1088/0967-3334/26/3/R02
10.1002/elps.201800298
10.1021/acssensors.1c00864
10.1002/app.48958
10.1088/0022-3727/40/19/R01
10.1371/journal.pone.0175089
10.1002/elps.201900402
10.1016/j.trac.2022.116788
10.1201/9781315274164
10.1016/j.jsamd.2021.03.005
10.1016/j.memsci.2017.01.056
10.1101/2022.07.21.500785
10.1016/j.bios.2014.02.009
10.1016/j.talanta.2020.121844
10.1002/smll.201200996
10.1039/C5LC01012H
10.1039/C8LC01288A
10.1039/D2LC00213B
10.1002/biot.201700047
10.3390/ijms23041981
10.1088/1361-6439/aae773
10.1002/adhm.201801084
10.1007/s11892-020-01357-1
10.1038/srep24192
10.1016/j.snb.2016.02.085
10.1038/s41598-021-81661-2
10.3390/mi13030486
10.1002/jcp.27729
10.1016/j.bios.2021.113660
10.1063/5.0002169
10.3390/s18114011
10.3390/app11125329
10.1038/s41598-019-51464-7
10.1021/acssensors.1c00602
10.1063/1.5125264
10.1002/smll.201903916
10.1016/j.bios.2022.114100
10.1021/acsmacrolett.9b00921
10.1021/acs.analchem.7b02080
10.1039/b912213c
10.1007/s11517-010-0611-4
10.1063/1.3567094
10.1016/j.lwt.2021.112172
10.1088/0960-1317/12/4/324
10.1039/C8LC00458G
10.1038/s41598-020-65483-2
10.1039/b917763a
10.7554/eLife.59961
10.1039/C7CS00016B
10.1021/acs.analchem.8b03636
10.1016/j.ab.2013.02.007
10.1021/ar300314s
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T5
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/bios12110956
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-6374
ExternalDocumentID oai_doaj_org_article_f6998bca3b7442acaf50cc09e437e316
PMC9688261
A745270706
36354465
10_3390_bios12110956
Genre Journal Article
Review
GeographicLocations Russia
GeographicLocations_xml – name: Russia
GrantInformation_xml – fundername: The Implementation Program Priority 2030
GroupedDBID .4S
.DC
2XV
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
ADMLS
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
TUS
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QL
7T5
7XB
8FK
AZQEC
C1K
COVID
DWQXO
GNUQQ
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-2d94bb15c0f99d1ac942f9483334d5ffc52db77c3d19c81b365a9c34dc8091ef3
IEDL.DBID M48
ISSN 2079-6374
IngestDate Wed Aug 27 01:32:46 EDT 2025
Thu Aug 21 18:39:17 EDT 2025
Thu Jul 10 18:40:51 EDT 2025
Fri Jul 25 11:54:48 EDT 2025
Tue Jun 10 21:02:18 EDT 2025
Thu Apr 03 07:03:28 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Tue Jul 01 02:24:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords point-of-care devices
microfluidics
active pumping methods
lab-on-a-chip
passive pumping methods
lab-on-a-disk
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-2d94bb15c0f99d1ac942f9483334d5ffc52db77c3d19c81b365a9c34dc8091ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4860-9013
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/bios12110956
PMID 36354465
PQID 2734609237
PQPubID 2032424
ParticipantIDs doaj_primary_oai_doaj_org_article_f6998bca3b7442acaf50cc09e437e316
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9688261
proquest_miscellaneous_2735166473
proquest_journals_2734609237
gale_infotracacademiconefile_A745270706
pubmed_primary_36354465
crossref_citationtrail_10_3390_bios12110956
crossref_primary_10_3390_bios12110956
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biosensors (Basel)
PublicationTitleAlternate Biosensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jackson (ref_13) 2017; 46
Essaouiba (ref_27) 2020; 164
ref_93
Zhang (ref_129) 2020; 13
Sierra (ref_89) 2021; 6
ref_14
Tehranirokh (ref_3) 2013; 7
Zhang (ref_110) 2021; 11
Khoo (ref_12) 2018; 13
ref_97
Gossett (ref_8) 2010; 397
Pawell (ref_9) 2013; 7
Mu (ref_22) 2013; 9
Sung (ref_69) 2010; 10
ref_17
ref_16
Han (ref_125) 2021; 21
Zimmermann (ref_79) 2007; 7
Marimuthu (ref_70) 2013; 437
Shrirao (ref_19) 2018; 6
Brassard (ref_121) 2019; 19
Li (ref_134) 2020; 9
Goy (ref_56) 2019; 145
Xu (ref_136) 2015; 9
ref_25
Scott (ref_124) 2019; 19
Lok (ref_62) 2012; 166–167
Kim (ref_95) 2018; 28
ref_28
Zhu (ref_116) 2017; 89
Xu (ref_106) 2020; 14
Weng (ref_43) 2021; 151
Wang (ref_98) 2018; 18
Gong (ref_20) 2019; 40
Park (ref_101) 2018; 18
Zeng (ref_92) 2022; 205
Christopher (ref_57) 2007; 40
Schimel (ref_99) 2021; 25
Sesen (ref_32) 2020; 10
Chakraborty (ref_48) 2020; 137
Hettiarachchi (ref_111) 2021; 332
Farahinia (ref_11) 2021; 6
Chuang (ref_96) 2019; 284
Zhang (ref_75) 2010; 9
Han (ref_58) 2021; 43
Zhao (ref_132) 2021; 21
Gao (ref_44) 2022; 157
Pandey (ref_35) 2018; 13
Chen (ref_131) 2021; 6
ref_82
Li (ref_36) 2019; 91
Li (ref_128) 2015; 112
Mittal (ref_24) 2019; 234
Liang (ref_94) 2017; 529
Xu (ref_15) 2020; 41
Veserat (ref_86) 2016; 16
Tay (ref_40) 2016; 34
ref_88
Roy (ref_50) 2011; 11
Lin (ref_41) 2020; 16
Zhang (ref_52) 2009; 50
Herrmann (ref_10) 2019; 13
Jiang (ref_2) 2016; 82
Olanrewaju (ref_78) 2018; 18
Lim (ref_91) 2022; 197
Li (ref_103) 2015; 15
Gervais (ref_135) 2011; 27
ref_54
ref_51
Bengtsson (ref_122) 2018; 22
Chong (ref_60) 2016; 16
Domachuk (ref_47) 2010; 22
Ozcelik (ref_130) 2021; 25
Ma (ref_53) 2019; 8
Chen (ref_105) 2021; 224
Dong (ref_5) 2016; 6
Shamloo (ref_118) 2021; 11
Singh (ref_33) 2002; 12
Stavrakis (ref_21) 2019; 55
Azizgolshani (ref_26) 2021; 21
Zhu (ref_4) 2012; 12
Gao (ref_71) 2019; 362
Han (ref_126) 2019; 19
ref_67
ref_66
Abadpour (ref_29) 2020; 20
Chen (ref_117) 2019; 91
Sachdeva (ref_37) 2021; 8
Novo (ref_80) 2014; 57
Zhu (ref_59) 2017; 17
Korczyk (ref_76) 2013; 7
Goral (ref_68) 2013; 13
Gabrielse (ref_84) 1990; 65
Ren (ref_46) 2013; 46
Li (ref_104) 2013; 15
ref_113
ref_112
Hwu (ref_120) 2022; 22
Tachibana (ref_133) 2015; 206
Kao (ref_74) 2020; 20
ref_39
Byun (ref_77) 2014; 35
Xing (ref_85) 2016; 18
Huh (ref_23) 2005; 26
Kim (ref_31) 2018; 12
ref_38
Juncker (ref_107) 2002; 74
Reyes (ref_30) 2015; 15
Epifania (ref_81) 2018; 265
Zhu (ref_127) 2021; 15
Ballerini (ref_65) 2011; 5
Lynn (ref_63) 2009; 9
Calver (ref_87) 2020; 901
(ref_61) 2014; 4
Reis (ref_72) 2021; 6
Soares (ref_114) 2021; 21
Mavrogiannis (ref_64) 2016; 10
Shin (ref_73) 2016; 230
Gowda (ref_119) 2022; 813
Hu (ref_90) 2021; 21
Ahi (ref_83) 2022; 195
ref_108
Sia (ref_34) 2008; 8
Yen (ref_123) 2019; 9
ref_109
Bhagat (ref_6) 2010; 48
ref_100
ref_42
ref_102
Sorger (ref_1) 2006; 442
Dittrich (ref_45) 2006; 5
Li (ref_115) 2019; 4
Rajawat (ref_18) 2020; 10
ref_49
Cosson (ref_55) 2014; 4
ref_7
References_xml – volume: 74
  start-page: 6139
  year: 2002
  ident: ref_107
  article-title: Autonomous Microfluidic Capillary System
  publication-title: Anal. Chem.
  doi: 10.1021/ac0261449
– volume: 15
  start-page: 17
  year: 2013
  ident: ref_104
  article-title: An optimized hollow microneedle for minimally invasive blood extraction
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-012-9683-2
– volume: 82
  start-page: 2210
  year: 2016
  ident: ref_2
  article-title: High-Throughput Single-Cell Cultivation on Microfluidic Streak Plates
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03588-15
– volume: 11
  start-page: 19189
  year: 2021
  ident: ref_110
  article-title: Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-98655-9
– volume: 50
  start-page: 5358
  year: 2009
  ident: ref_52
  article-title: The fabrication of polymer microfluidic devices using a solid-to-solid interfacial polyaddition
  publication-title: Polymer
  doi: 10.1016/j.polymer.2009.09.053
– ident: ref_39
  doi: 10.3390/mi11010067
– volume: 11
  start-page: 3193
  year: 2011
  ident: ref_50
  article-title: Thermoplastic elastomers for microfluidics: Towards a high-throughput fabrication method of multilayered microfluidic devices
  publication-title: Lab Chip
  doi: 10.1039/c1lc20251k
– volume: 4
  start-page: 4462
  year: 2014
  ident: ref_55
  article-title: Hydrogel microfluidics for the patterning of pluripotent stem cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep04462
– volume: 25
  start-page: 5
  year: 2021
  ident: ref_130
  article-title: A practical microfluidic pump enabled by acoustofluidics and 3D printing
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-020-02411-w
– ident: ref_97
  doi: 10.1109/MEMSYS.2011.5734629
– ident: ref_108
– volume: 13
  start-page: 17
  year: 2020
  ident: ref_129
  article-title: Acoustic Microfluidics
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-090919-102205
– volume: 9
  start-page: 014106
  year: 2015
  ident: ref_136
  article-title: Phaseguide-assisted blood separation microfluidic device for point-of-care applications
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4906458
– volume: 7
  start-page: 119
  year: 2007
  ident: ref_79
  article-title: Capillary pumps for autonomous capillary systems
  publication-title: Lab Chip
  doi: 10.1039/B609813D
– ident: ref_25
  doi: 10.20944/preprints201903.0031.v1
– volume: 34
  start-page: 404
  year: 2016
  ident: ref_40
  article-title: Advances in microfluidics in combating infectious diseases
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2016.02.002
– volume: 8
  start-page: 1982
  year: 2008
  ident: ref_34
  article-title: Microfluidics and point-of-care testing
  publication-title: Lab Chip
  doi: 10.1039/b817915h
– volume: 21
  start-page: 4716
  year: 2021
  ident: ref_90
  article-title: A vacuum-assisted, highly parallelized microfluidic array for performing multi-step digital assays
  publication-title: Lab Chip
  doi: 10.1039/D1LC00636C
– volume: 18
  start-page: 2167
  year: 2018
  ident: ref_98
  article-title: A hydrostatic pressure-driven passive micropump enhanced with siphon-based autofill function
  publication-title: Lab Chip
  doi: 10.1039/C8LC00236C
– volume: 15
  start-page: 1250
  year: 2021
  ident: ref_127
  article-title: CMOS-Based Electrokinetic Microfluidics With Multi-Modal Cellular and Bio-Molecular Sensing for End-to-End Point-of-Care System
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2021.3136165
– ident: ref_7
  doi: 10.3390/mi10090593
– ident: ref_14
  doi: 10.3390/mi11080774
– volume: 16
  start-page: 334
  year: 2016
  ident: ref_86
  article-title: Surface-tension driven open microfluidic platform for hanging droplet culture
  publication-title: Lab Chip
  doi: 10.1039/C5LC01353D
– volume: 27
  start-page: 64
  year: 2011
  ident: ref_135
  article-title: Capillary-driven multiparametric microfluidic chips for one-step immunoassays
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2011.06.016
– volume: 25
  start-page: 78
  year: 2021
  ident: ref_99
  article-title: Pressure-driven generation of complex microfluidic droplet networks
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-021-02477-0
– volume: 5
  start-page: 210
  year: 2006
  ident: ref_45
  article-title: Lab-on-a-chip: Microfluidics in drug discovery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1985
– volume: 13
  start-page: 1039
  year: 2013
  ident: ref_68
  article-title: A continuous perfusion microplate for cell culture
  publication-title: Lab Chip
  doi: 10.1039/c2lc41102d
– volume: 15
  start-page: 382
  year: 2015
  ident: ref_103
  article-title: A self-powered one-touch blood extraction system: A novel polymer-capped hollow microneedle integrated with a pre-vacuum actuator
  publication-title: Lab Chip
  doi: 10.1039/C4LC00937A
– volume: 20
  start-page: 54
  year: 2020
  ident: ref_74
  article-title: Gravity-driven microfluidic assay for digital enumeration of bacteria and for antibiotic susceptibility testing
  publication-title: Lab Chip
  doi: 10.1039/C9LC00684B
– volume: 91
  start-page: 7958
  year: 2019
  ident: ref_117
  article-title: Rapid and Automated Detection of Six Contaminants in Milk Using a Centrifugal Microfluidic Platform with Two Rotation Axes
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b01998
– volume: 22
  start-page: 249
  year: 2010
  ident: ref_47
  article-title: Bio-microfluidics: Biomaterials and Biomimetic Designs
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900821
– ident: ref_93
  doi: 10.3390/mi12050482
– volume: 12
  start-page: 906
  year: 2012
  ident: ref_4
  article-title: Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells
  publication-title: Lab Chip
  doi: 10.1039/C2LC20911J
– volume: 8
  start-page: 602659
  year: 2021
  ident: ref_37
  article-title: Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.602659
– volume: 55
  start-page: 36
  year: 2019
  ident: ref_21
  article-title: High-throughput microfluidic imaging flow cytometry
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2018.08.002
– ident: ref_88
  doi: 10.1101/2021.07.29.454194
– volume: 19
  start-page: 1941
  year: 2019
  ident: ref_121
  article-title: Extraction of nucleic acids from blood: Unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes
  publication-title: Lab Chip
  doi: 10.1039/C9LC00276F
– volume: 397
  start-page: 3249
  year: 2010
  ident: ref_8
  article-title: Label-free cell separation and sorting in microfluidic systems
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-010-3721-9
– volume: 265
  start-page: 452
  year: 2018
  ident: ref_81
  article-title: Capillary-driven microfluidic device with integrated nanoporous microbeads for ultrarapid biosensing assays
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.03.051
– volume: 112
  start-page: 4970
  year: 2015
  ident: ref_128
  article-title: Acoustic separation of circulating tumor cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1504484112
– volume: 206
  start-page: 303
  year: 2015
  ident: ref_133
  article-title: Self-propelled continuous-flow PCR in capillary-driven microfluidic device: Microfluidic behavior and DNA amplification
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.09.004
– volume: 10
  start-page: 241
  year: 2020
  ident: ref_18
  article-title: Disease diagnostics using hydrodynamic flow focusing in microfluidic devices: Beyond flow cytometry
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-019-00144-6
– volume: 442
  start-page: 403
  year: 2006
  ident: ref_1
  article-title: Cells on chips
  publication-title: Nature
  doi: 10.1038/nature05063
– volume: 21
  start-page: 184
  year: 2021
  ident: ref_125
  article-title: Integrated microfluidic platform with electrohydrodynamic focusing and a carbon-nanotube-based field-effect transistor immunosensor for continuous, selective, and label-free quantification of bacteria
  publication-title: Lab Chip
  doi: 10.1039/D0LC00783H
– volume: 9
  start-page: 995
  year: 2010
  ident: ref_75
  article-title: A gravity-actuated technique for flexible and portable microfluidic droplet manipulation
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-010-0611-6
– ident: ref_49
  doi: 10.3390/mi7120225
– volume: 13
  start-page: 34
  year: 2018
  ident: ref_12
  article-title: Expansion of patient-derived circulating tumor cells from liquid biopsies using a CTC microfluidic culture device
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2017.125
– volume: 332
  start-page: 113047
  year: 2021
  ident: ref_111
  article-title: Design and development of a microfluidic droplet generator with vision sensing for lab-on-a-chip devices
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2021.113047
– volume: 21
  start-page: 4005
  year: 2021
  ident: ref_132
  article-title: On-chip rapid drug screening of leukemia cells by acoustic streaming
  publication-title: Lab Chip
  doi: 10.1039/D1LC00684C
– volume: 7
  start-page: 051502
  year: 2013
  ident: ref_3
  article-title: Microfluidic devices for cell cultivation and proliferation
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4826935
– volume: 166–167
  start-page: 893
  year: 2012
  ident: ref_62
  article-title: Ferrofluid plug as valve and actuator for whole-cell PCR on chip
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2012.03.001
– volume: 362
  start-page: 169
  year: 2019
  ident: ref_71
  article-title: Droplet microfluidics with gravity-driven overflow system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.026
– volume: 35
  start-page: 245
  year: 2014
  ident: ref_77
  article-title: Pumps for microfluidic cell culture
  publication-title: Electrophoresis
  doi: 10.1002/elps.201300205
– ident: ref_17
  doi: 10.3390/bios12040220
– volume: 145
  start-page: 104314
  year: 2019
  ident: ref_56
  article-title: Microfluidics and hydrogel: A powerful combination
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2019.104314
– volume: 6
  start-page: 1
  year: 2018
  ident: ref_19
  article-title: Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification
  publication-title: Technology
  doi: 10.1142/S2339547818300019
– volume: 17
  start-page: 34
  year: 2017
  ident: ref_59
  article-title: Passive and active droplet generation with microfluidics: A review
  publication-title: Lab Chip
  doi: 10.1039/C6LC01018K
– ident: ref_112
  doi: 10.23919/MIPRO55190.2022.9803371
– ident: ref_42
  doi: 10.3390/microorganisms7100381
– volume: 65
  start-page: 1317
  year: 1990
  ident: ref_84
  article-title: Thousandfold improvement in the measured antiproton mass
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.1317
– volume: 4
  start-page: 2738
  year: 2019
  ident: ref_115
  article-title: Sample-to-Answer Hepatitis B Virus DNA Detection from Whole Blood on a Centrifugal Microfluidic Platform with Double Rotation Axes
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b01270
– volume: 10
  start-page: 034107
  year: 2016
  ident: ref_64
  article-title: Microfluidics made easy: A robust low-cost constant pressure flow controller for engineers and cell biologists
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4950753
– volume: 164
  start-page: 107783
  year: 2020
  ident: ref_27
  article-title: Development of a pancreas-liver organ-on-chip coculture model for organ-to-organ interaction studies
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2020.107783
– ident: ref_82
  doi: 10.3390/bios10040039
– volume: 15
  start-page: 1230
  year: 2015
  ident: ref_30
  article-title: Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation
  publication-title: Lab Chip
  doi: 10.1039/C4LC01246A
– volume: 22
  start-page: 27
  year: 2018
  ident: ref_122
  article-title: A clip-on electroosmotic pump for oscillating flow in microfluidic cell culture devices
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-018-2046-4
– volume: 12
  start-page: 257
  year: 2018
  ident: ref_31
  article-title: Inertial Microfluidics-Based Cell Sorting
  publication-title: BioChip J.
  doi: 10.1007/s13206-018-2401-2
– volume: 901
  start-page: A6
  year: 2020
  ident: ref_87
  article-title: On the thin-film asymptotics of surface tension driven microfluidics
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.532
– volume: 813
  start-page: 152556
  year: 2022
  ident: ref_119
  article-title: Development of a proof-of-concept microfluidic portable pathogen analysis system for water quality monitoring
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.152556
– ident: ref_100
  doi: 10.3390/mi10100653
– volume: 21
  start-page: 1454
  year: 2021
  ident: ref_26
  article-title: High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows
  publication-title: Lab Chip
  doi: 10.1039/D1LC00067E
– volume: 7
  start-page: 056501
  year: 2013
  ident: ref_9
  article-title: Manufacturing and wetting low-cost microfluidic cell separation devices
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4821315
– volume: 284
  start-page: 736
  year: 2019
  ident: ref_96
  article-title: Bio-O-Pump: A novel portable microfluidic device driven by osmotic pressure
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.01.020
– volume: 19
  start-page: 3834
  year: 2019
  ident: ref_124
  article-title: Automated microchannel alignment using innate opto-signature for microchip electrophoresis
  publication-title: Lab Chip
  doi: 10.1039/C9LC00716D
– ident: ref_54
  doi: 10.1007/978-981-15-0489-1_1
– volume: 4
  start-page: 77
  year: 2014
  ident: ref_61
  article-title: A Magnetic Micropump Based on Ferrofluidic Actuation
  publication-title: Int. J. Autom. Smart Technol.
  doi: 10.5875/ausmt.v4i2.311
– volume: 18
  start-page: 1215
  year: 2018
  ident: ref_101
  article-title: Finger-actuated microfluidic device for the blood cross-matching test
  publication-title: Lab Chip
  doi: 10.1039/C7LC01128H
– volume: 21
  start-page: 2932
  year: 2021
  ident: ref_114
  article-title: Sample-to-answer COVID-19 nucleic acid testing using a low-cost centrifugal microfluidic platform with bead-based signal enhancement and smartphone read-out
  publication-title: Lab Chip
  doi: 10.1039/D1LC00266J
– volume: 197
  start-page: 113753
  year: 2022
  ident: ref_91
  article-title: Microfluidic device for one-step detection of breast cancer-derived exosomal mRNA in blood using signal-amplifiable 3D nanostructure
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113753
– volume: 7
  start-page: 024108
  year: 2013
  ident: ref_76
  article-title: Block-and-break generation of microdroplets with fixed volume
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4801637
– volume: 18
  start-page: 80
  year: 2016
  ident: ref_85
  article-title: A pumpless microfluidic device driven by surface tension for pancreatic islet analysis
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-016-0109-4
– volume: 43
  start-page: 247
  year: 2021
  ident: ref_58
  article-title: A review on microdroplet generation in microfluidics
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-021-02971-0
– volume: 6
  start-page: 4338
  year: 2021
  ident: ref_72
  article-title: Gravity-Driven Microfluidic Siphons: Fluidic Characterization and Application to Quantitative Immunoassays
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c01524
– volume: 26
  start-page: R73
  year: 2005
  ident: ref_23
  article-title: Microfluidics for flow cytometric analysis of cells and particles
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/26/3/R02
– volume: 40
  start-page: 1212
  year: 2019
  ident: ref_20
  article-title: New advances in microfluidic flow cytometry
  publication-title: Electrophoresis
  doi: 10.1002/elps.201800298
– volume: 6
  start-page: 2998
  year: 2021
  ident: ref_89
  article-title: Pump-Free Microfluidic Device for the Electrochemical Detection of α 1 -Acid Glycoprotein
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c00864
– volume: 137
  start-page: 48958
  year: 2020
  ident: ref_48
  article-title: PDMS microfluidics: A mini review
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.48958
– volume: 40
  start-page: R319
  year: 2007
  ident: ref_57
  article-title: Microfluidic methods for generating continuous droplet streams
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/40/19/R01
– ident: ref_109
  doi: 10.1371/journal.pone.0175089
– volume: 41
  start-page: 933
  year: 2020
  ident: ref_15
  article-title: Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis
  publication-title: Electrophoresis
  doi: 10.1002/elps.201900402
– volume: 157
  start-page: 116788
  year: 2022
  ident: ref_44
  article-title: Recent advances in microfluidic devices for foodborne pathogens detection
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2022.116788
– ident: ref_67
  doi: 10.1201/9781315274164
– volume: 6
  start-page: 303
  year: 2021
  ident: ref_11
  article-title: Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: A review
  publication-title: J. Sci. Adv. Mater. Devices
  doi: 10.1016/j.jsamd.2021.03.005
– volume: 529
  start-page: 47
  year: 2017
  ident: ref_94
  article-title: Forward osmosis membranes with unprecedented water flux
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.01.056
– ident: ref_113
  doi: 10.1101/2022.07.21.500785
– volume: 57
  start-page: 284
  year: 2014
  ident: ref_80
  article-title: Integrated optical detection of autonomous capillary microfluidic immunoassays:a hand-held point-of-care prototype
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.02.009
– volume: 224
  start-page: 121844
  year: 2021
  ident: ref_105
  article-title: Integrated and finger-actuated microfluidic chip for point-of-care testing of multiple pathogens
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.121844
– volume: 9
  start-page: 9
  year: 2013
  ident: ref_22
  article-title: Microfluidics for Manipulating Cells
  publication-title: Small
  doi: 10.1002/smll.201200996
– volume: 16
  start-page: 35
  year: 2016
  ident: ref_60
  article-title: Active droplet generation in microfluidics
  publication-title: Lab Chip
  doi: 10.1039/C5LC01012H
– volume: 19
  start-page: 1772
  year: 2019
  ident: ref_126
  article-title: Two-dimensional computational method for generating planar electrode patterns with enhanced volumetric electric fields and its application to continuous dielectrophoretic bacterial capture
  publication-title: Lab Chip
  doi: 10.1039/C8LC01288A
– ident: ref_66
– volume: 22
  start-page: 2695
  year: 2022
  ident: ref_120
  article-title: Centrifugal disc liquid reciprocation flow considerations for antibody binding to COVID antigen array during microfluidic integration
  publication-title: Lab Chip
  doi: 10.1039/D2LC00213B
– volume: 13
  start-page: 1700047
  year: 2018
  ident: ref_35
  article-title: Microfluidics Based Point-of-Care Diagnostics
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201700047
– ident: ref_16
  doi: 10.3390/ijms23041981
– volume: 28
  start-page: 125005
  year: 2018
  ident: ref_95
  article-title: Stand-alone external power-free microfluidic fuel cell system harnessing osmotic pump for long-term operation
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aae773
– volume: 8
  start-page: 1801084
  year: 2019
  ident: ref_53
  article-title: Paper Microfluidics for Cell Analysis
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201801084
– volume: 20
  start-page: 72
  year: 2020
  ident: ref_29
  article-title: Pancreas-on-a-Chip Technology for Transplantation Applications
  publication-title: Curr. Diabetes Rep.
  doi: 10.1007/s11892-020-01357-1
– volume: 6
  start-page: 24192
  year: 2016
  ident: ref_5
  article-title: Automated Chemotactic Sorting and Single-cell Cultivation of Microbes using Droplet Microfluidics
  publication-title: Sci. Rep.
  doi: 10.1038/srep24192
– volume: 230
  start-page: 380
  year: 2016
  ident: ref_73
  article-title: A stand-alone pressure-driven 3D microfluidic chemical sensing analytic device
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.02.085
– volume: 11
  start-page: 1939
  year: 2021
  ident: ref_118
  article-title: Cancer cell enrichment on a centrifugal microfluidic platform using hydrodynamic and magnetophoretic techniques
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-81661-2
– ident: ref_51
  doi: 10.3390/mi13030486
– volume: 234
  start-page: 8352
  year: 2019
  ident: ref_24
  article-title: Organ-on-chip models: Implications in drug discovery and clinical applications
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.27729
– volume: 195
  start-page: 113660
  year: 2022
  ident: ref_83
  article-title: A capillary driven microfluidic chip for SERS based hCG detection
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113660
– volume: 14
  start-page: 031503
  year: 2020
  ident: ref_106
  article-title: Passive micropumping in microfluidics for point-of-care testing
  publication-title: Biomicrofluidics
  doi: 10.1063/5.0002169
– ident: ref_38
  doi: 10.3390/s18114011
– ident: ref_102
  doi: 10.3390/app11125329
– volume: 9
  start-page: 14794
  year: 2019
  ident: ref_123
  article-title: A Low-Power CMOS Microfluidic Pump Based on Travelling-Wave Electroosmosis for Diluted Serum Pumping
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51464-7
– volume: 6
  start-page: 2386
  year: 2021
  ident: ref_131
  article-title: Mixing during Trapping Enabled a Continuous-Flow Microfluidic Smartphone Immunoassay Using Acoustic Streaming
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c00602
– volume: 13
  start-page: 061501
  year: 2019
  ident: ref_10
  article-title: Spiral microfluidic devices for cell separation and sorting in bioprocesses
  publication-title: Biomicrofluidics
  doi: 10.1063/1.5125264
– volume: 16
  start-page: 1903916
  year: 2020
  ident: ref_41
  article-title: Progress in Microfluidics-Based Exosome Separation and Detection Technologies for Diagnostic Applications
  publication-title: Small
  doi: 10.1002/smll.201903916
– volume: 205
  start-page: 114100
  year: 2022
  ident: ref_92
  article-title: Hand-powered vacuum-driven microfluidic gradient generator for high-throughput antimicrobial susceptibility testing
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2022.114100
– volume: 9
  start-page: 328
  year: 2020
  ident: ref_134
  article-title: Capillary Microfluidic-Assisted Surface Structuring
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.9b00921
– volume: 89
  start-page: 9315
  year: 2017
  ident: ref_116
  article-title: Comprehensive Study of the Flow Control Strategy in a Wirelessly Charged Centrifugal Microfluidic Platform with Two Rotation Axes
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b02080
– volume: 9
  start-page: 3422
  year: 2009
  ident: ref_63
  article-title: Passive microfluidic pumping using coupled capillary/evaporation effects
  publication-title: Lab Chip
  doi: 10.1039/b912213c
– volume: 48
  start-page: 999
  year: 2010
  ident: ref_6
  article-title: Microfluidics for cell separation
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-010-0611-4
– volume: 5
  start-page: 014105
  year: 2011
  ident: ref_65
  article-title: Flow control concepts for thread-based microfluidic devices
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3567094
– volume: 151
  start-page: 112172
  year: 2021
  ident: ref_43
  article-title: Advances in microfluidic nanobiosensors for the detection of foodborne pathogens
  publication-title: LWT
  doi: 10.1016/j.lwt.2021.112172
– volume: 12
  start-page: 486
  year: 2002
  ident: ref_33
  article-title: Development of a microfluidic device for fluorescence activated cell sorting
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/12/4/324
– volume: 18
  start-page: 2323
  year: 2018
  ident: ref_78
  article-title: Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits
  publication-title: Lab Chip
  doi: 10.1039/C8LC00458G
– volume: 10
  start-page: 8736
  year: 2020
  ident: ref_32
  article-title: Image-Based Single Cell Sorting Automation in Droplet Microfluidics
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65483-2
– volume: 10
  start-page: 446
  year: 2010
  ident: ref_69
  article-title: A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip
  publication-title: Lab Chip
  doi: 10.1039/b917763a
– ident: ref_28
  doi: 10.7554/eLife.59961
– volume: 46
  start-page: 4245
  year: 2017
  ident: ref_13
  article-title: Materials and microfluidics: Enabling the efficient isolation and analysis of circulating tumour cells
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00016B
– volume: 91
  start-page: 352
  year: 2019
  ident: ref_36
  article-title: Paper Microfluidics for Point-of-Care Blood-Based Analysis and Diagnostics
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b03636
– volume: 437
  start-page: 161
  year: 2013
  ident: ref_70
  article-title: Pumpless steady-flow microfluidic chip for cell culture
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2013.02.007
– volume: 46
  start-page: 2396
  year: 2013
  ident: ref_46
  article-title: Materials for Microfluidic Chip Fabrication
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300314s
SSID ssj0000747937
Score 2.4576817
SecondaryResourceType review_article
Snippet This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 956
SubjectTerms active pumping methods
Analysis
Biochips
Control systems
Efficiency
Flow control
Geometry
Gravity
Health aspects
Humans
lab-on-a-chip
Lab-On-A-Chip Devices
lab-on-a-disk
Mechanical systems
Methods
Microfluidic Analytical Techniques
Microfluidic devices
Microfluidics
Microfluidics - methods
Multitasking
passive pumping methods
Personal computers
point-of-care devices
Polymerization
Porous materials
Reagents
Review
Reynolds number
Smartphone
Viscosity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yJz2I31ZXiaB4kLJt85I03saPYRFm8eDC3kL6krADQ0d2Zvz7fUm7Q4uIF49t3iF93695-T3G3jqkMBAbKIMAV4IiWTiyqdLHiqJfjaB8OtFdXajzS_h2Ja8mo75ST9gADzww7iwqKgg6dKLTAI1DF2WFWJkAQgdRZ7BtinmTYir7YJ3-GOmh011QXX_Wrbe7BGeWgPdmMShD9f_pkCcRad4tOQk_ywfs_pg38sWw34fsTugfsXsTNMHHbHmx_RU2_DsJiJ75Ks-G3nHKSvkqtd3FzWHt18i_hOwdPvIFT97gJlwPTex8OCd4wi6XX398Pi_HMQklylrvy8Yb6LpaYhWN8bVDA0000AohwMsYUTa-0xqFrw1SliqUdAZpDVtiXIjiKTvpt314zjiYGLwK2LQtgGudCa2MgZI4F4Ck5wv24ZZxFkcM8TTKYmOplkhstlM2F-zdkfrngJ3xF7pPSQZHmoR4nV-QHthRD-y_9KBg75MEbbJL2hK68XoBfVhCuLILDbLR5OCI8vRWyHY02J1NKD-qomxXF-zNcZlMLZ2fuD5sD5lG1kqBFgV7NujEcc-CEreEPVcwPdOW2UfNV_r1dYbzNmQgVMe--B9ceMnuNul-Rr4secpO9jeH8Iqypn33OhvIb9x4FmY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96vuiD-G31lAiKD1KubZKm8UXWj-UQ9vDBg30r6STxFpb23A__fmfSbt0i-thmKGnmM5nJbxh7bQHdQChk6oW0qSyRFxZ1KnUhQ--XgywdZXQXF-X5pfy6VMvhwG07lFUebGI01K4DOiM_IxiWMsNwRH-4_plS1yjKrg4tNG6yWwRdRlKtl3o8YyFweHS_fb27wN39WbPqtgRqRvB7E08UAfv_NstHfmlaM3nkhOb32N0heuSznt332Q3fPmB3jjAFH7L5RffLr_k3ZBM-80XsEL3lGJvyBRXfhfV-5VbAP_toI97zGSebsPFXfSk777MFj9jl_Mv3T-fp0CwhBZXrXVo4I5smV5AFY1xuwcgiGFkJIaRTIYAqXKM1CJcbwFhVlMoawDGoMGTwQTxmJ23X-qeMSxO8Kz0UVSWlrazxlQoeQznrJfLQJezdYeFqGJDEqaHFusYdBS1zfbzMCXszUl_3CBr_oPtIPBhpCPc6vug2P-pBjepQ4vawASsaLWVhwQaVAWTGS6G9yPEjb4mDNWknTgnscMkAf4xwruqZlqrQaOaQ8vTA5HpQ2239R8gS9mocRoWjLIptfbePNCovS6lFwp70MjHOWWD4Rgh0CdMTaZn81HSkXV1FUG-DaoK72Wf_n9Zzdrug-xfxMuQpO9lt9v4FRkW75mUU_d-i2A1y
  priority: 102
  providerName: ProQuest
Title Novel Pumping Methods for Microfluidic Devices: A Comprehensive Review
URI https://www.ncbi.nlm.nih.gov/pubmed/36354465
https://www.proquest.com/docview/2734609237
https://www.proquest.com/docview/2735166473
https://pubmed.ncbi.nlm.nih.gov/PMC9688261
https://doaj.org/article/f6998bca3b7442acaf50cc09e437e316
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD7sBWR9EO9W1yGC4oPUbZukaQSRWd1hEWZYxIF5K2ku7sDQ6lxE_70naWeYsvriY5uT0uTcc_kOwEul0Q24jMWWMhWzHHmhUKdi4xL0fqlmufE7uuNJfjlln2d8dgDbaqPdBK7-mtr5elLT5eLtrx-_P6DCv_cZJ6bsZ9W8WXmkMo-pdwjH6JOEr2Uw7gL9YJOFX0ES7cn3G51O4BZFx-uxw3ruKaD437TVe86qf5ByzzON7sKdLqQkw1YG7sGBre_D7T2gwQcwmjQ_7YJcIe_wmYxD2egVwYCVjP2JPLfYzM1ck082GI53ZEi8oVja6_Z8O2m3EB7CdHTx9eNl3FVQiDVPxTrOjGRVlXKdOClNqrRkmZOsoJQyw53TPDOVEJqaVGoMYGnOldTYpguMI6yjj-Cobmr7BAiTzprc6qwoGFOFkrbgzmJ8pyxDxpoI3mwnrtQdvLivcrEoMc3wM17uz3gEr3bU31tYjX_QnXse7Gg8GHZ40Sy_lZ1ulS7HnLHSilaCsUxp5XiidSIto8LSFD_y2nOw9EKEv6RVd_MAB-bBr8qhYDwTaPuQ8nTL5HIriqUHAMoTDIRFBC92zaiFfmtF1bbZBBqe5jkTNILHrUzs_nkrWhGInrT0BtVvqefXAelbou5givv0v3s-g5PM39cIlydP4Wi93NjnGEWtqwEcipkYwPH5xeTqyyCsRQyC0vwBMtcg4w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJuFAkai4oCiJrYTx0gILZTVlnZXHFppb6njB11plZR9gPhT_EZm8mIjBLceE48ix_O2x98Q8kobcAOeicBxoQORAC806FRgfQjeLzIisXiiO5km4zPxeRbPdsiv9i4MllW2NrEy1LY0uEd-gDAsSQjhiHx_-S3ArlF4utq20KjF4tj9_AEp2-rd0SHwd5-x0afTj-Og6SoQmDiS64BZJfI8ik3olbKRNkowr0TKORc29t7EzOZSGm4jZSCo40mslYExk4JvdZ7Dd6-R6-B4Q0z25Ex2ezoIRg_uvq6v51yFB_m8XCGIGsL99Txf1SDgbzew5Qf7NZpbTm90h9xuolU6rMXrLtlxxT1yawvD8D4ZTcvvbkG_gFjAM51UHalXFGJhOsFiP7_YzO3c0ENX2aS3dEjRBi3dRV06T-vTiQfk7EqW8SHZLcrCPSZUKO9s4gxLUyF0qpVLY-8gdNROgMzYAXnTLlxmGuRybKCxyCCDwWXOtpd5QPY76ssaseMfdB-QBx0N4mxXL8rl16xR28wnkI7mRvNcCsG00T4OjQmVE1w6HsFHXiMHM7QGMCWjm0sN8GOIq5UNpYiZBLMKlHstk7PGTKyyP0I9IC-7YVBwPLXRhSs3FU0cJYmQfEAe1TLRzZlDuIiIdwMie9LS-6n-SDG_qEDEFaglZM9P_j-tF-TG-HRykp0cTY-fkpsM735UFzH3yO56uXHPICJb588rNaDk_Kr17jf7qkqP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXGnMMBITDygqEnsxDESQh1dtTFaVYhJewuOL1ulqtl6AfHX-HWck6SlFYK3PSY-ihyfu338HYDX2qAb8LEIHBc6ECnyQqNOBdaH6P0iI1JLJ7qDYXp0Kj6dJWc78Gt1F4bKKlc2sTLUtjS0R94hGJY0xHBEdnxTFjHq9T9cXgXUQYpOWlftNGoROXE_f2D6Nn9_3ENe78dx__Drx6Og6TAQmCSSiyC2ShRFlJjQK2UjbZSIvRIZ51zYxHuTxLaQ0nAbKYMBHk8TrQyOmQz9rPMcv3sDdiVlRS3YPTgcjr6sd3gImh6df11tz7kKO8W4nBOkGoH_bfnBql3A305hwytuV2xuuMD-XbjTxK6sWwvbPdhx0_twewPR8AH0h-V3N2EjFBJ8ZoOqP_WcYWTMBlT65yfLsR0b1nOVhXrHuows0sxd1IX0rD6reAin17KQj6A1LafuCTChvLOpM3GWCaEzrVyWeIeBpHYCJci24e1q4XLT4JhTO41JjvkMLXO-ucxt2F9TX9b4Hf-gOyAerGkIdbt6Uc7O80aJc59icloYzQspRKyN9kloTKic4NLxCD_yhjiYk23AKRndXHHAHyOUrbwrRRJLNLJIubdict4YjXn-R8Tb8Go9jOpOZzh66splRZNEaSokb8PjWibWc-YYPBL-XRvklrRs_dT2yHR8UUGKK1RSzKWf_n9aL-Em6lz--Xh48gxuxXQRpLqVuQetxWzpnmN4tiheNHrA4Nt1q95v2sJQKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Pumping+Methods+for+Microfluidic+Devices%3A+A+Comprehensive+Review&rft.jtitle=Biosensors+%28Basel%29&rft.au=Iakovlev%2C+Aleksei+P.&rft.au=Erofeev%2C+Alexander+S.&rft.au=Gorelkin%2C+Petr+V.&rft.date=2022-11-01&rft.pub=MDPI&rft.eissn=2079-6374&rft.volume=12&rft.issue=11&rft_id=info:doi/10.3390%2Fbios12110956&rft_id=info%3Apmid%2F36354465&rft.externalDocID=PMC9688261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6374&client=summon