Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE

The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE) was devoted to the investigation of Saharan dust properties over the Caribbean. The campaign took place in June–July 2013. A wide set of ground-based and airborne aerosol instrumentation was deployed at the...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 19; no. 23; pp. 14571 - 14583
Main Authors Toledano, Carlos, Torres, Benjamín, Velasco-Merino, Cristian, Althausen, Dietrich, Groß, Silke, Wiegner, Matthias, Weinzierl, Bernadett, Gasteiger, Josef, Ansmann, Albert, González, Ramiro, Mateos, David, Farrel, David, Müller, Thomas, Haarig, Moritz, Cachorro, Victoria E
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 02.12.2019
European Geosciences Union
Copernicus Publications
SeriesAtmospheric Chemistry and Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE) was devoted to the investigation of Saharan dust properties over the Caribbean. The campaign took place in June–July 2013. A wide set of ground-based and airborne aerosol instrumentation was deployed at the island of Barbados for a comprehensive experiment. Several sun photometers performed measurements during this campaign: two AERONET (Aerosol Robotic Network) Cimel sun photometers and the Sun and Sky Automatic Radiometer (SSARA). The sun photometers were co-located with the ground-based multi-wavelength lidars BERTHA (Backscatter Extinction lidar Ratio Temperature Humidity profiling Apparatus) and POLIS (Portable Lidar System). Aerosol properties derived from direct sun and sky radiance observations are analyzed, and a comparison with the co-located lidar and in situ data is provided. The time series of aerosol optical depth (AOD) allows identifying successive dust events with short periods in between in which the marine background conditions were observed. The moderate aerosol optical depth in the range of 0.3 to 0.6 was found during the dust periods. The sun photometer infrared channel at the 1640 nm wavelength was used in the retrieval to investigate possible improvements to aerosol size retrievals, and it was expected to have a larger sensitivity to coarse particles. The comparison between column (aerosol optical depth) and surface (dust concentration) data demonstrates the connection between the Saharan Air Layer and the boundary layer in the Caribbean region, as is shown by the synchronized detection of the successive dust events in both datasets. However the differences of size distributions derived from sun photometer data and in situ observations reveal the difficulties in carrying out a column closure study.
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-19-14571-2019