Theoretical studies on the electronic structures and spectra of single silicon-doped SWCNTs

The equilibrium geometries and electronic structures of a series of SWCNTs doped with a silicon atom were studied by using density function theory (DFT). The most stable doping site of silicon predicted at B3LYP/6-31G(d,p) level was located near the boundary of the SWCNTs. The energy gaps of (3,3) C...

Full description

Saved in:
Bibliographic Details
Published inCentral European journal of chemistry Vol. 8; no. 3; pp. 587 - 593
Main Authors Gao, Peng, Yu, Yingying, Ni, Zhangqin, Teng, Qiwen
Format Journal Article
LanguageEnglish
Published Heidelberg SP Versita 01.06.2010
Versita
De Gruyter
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The equilibrium geometries and electronic structures of a series of SWCNTs doped with a silicon atom were studied by using density function theory (DFT). The most stable doping site of silicon predicted at B3LYP/6-31G(d,p) level was located near the boundary of the SWCNTs. The energy gaps of (3,3) C 48 , (3,3) C 60 and (3,3) C 72 were respectively decreased by 0.43, 0.25 and 0.14 eV after doping. Based on the B3LYP/6-31G(d) optimized geometries, the electronic spectra of the doped SWCNTs were computed using the INDO/CIS method. The first UV absorption at 973.9 nm of (5,5)-Si(L) (C 59 Si) compared with that at 937.5 nm of (5,5) (C 60 ) was red-shifted. The 13 C NMR spectra and nuclear independent chemical shifts (NICS) of the doped SWCNTs were investigated at B3LYP/6-31G(d) level. The chemical shift at 119.4 of the carbon atom bonded with the silicon atom in (3,3)-Si(L) (C 59 Si) in comparison with that at 144.1 of the same carbon atom in (3,3) (C 60 ) moved upfield. The tendency of the aromaticity (NICS = −0.1) for (3,3)-Si(H) (C 47 Si) with respect to that of the anti-aromaticity (NICS = 6.0) for (3,3) (C 48 ) was predicted.
ISSN:1895-1066
2391-5420
1644-3624
2391-5420
DOI:10.2478/s11532-010-0018-y