Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction

The demand for sustainable energy has motivated the development of artificial photosynthesis. Yet the catalyst and reaction interface designs for directly fixing permanent gases (e.g. CO 2 , O 2 , N 2 ) into liquid fuels are still challenged by slow mass transfer and sluggish catalytic kinetics at t...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 2682 - 11
Main Authors Hao, Yu-Chen, Chen, Li-Wei, Li, Jiani, Guo, Yu, Su, Xin, Shu, Miao, Zhang, Qinghua, Gao, Wen-Yan, Li, Siwu, Yu, Zi-Long, Gu, Lin, Feng, Xiao, Yin, An-Xiang, Si, Rui, Zhang, Ya-Wen, Wang, Bo, Yan, Chun-Hua
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.05.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The demand for sustainable energy has motivated the development of artificial photosynthesis. Yet the catalyst and reaction interface designs for directly fixing permanent gases (e.g. CO 2 , O 2 , N 2 ) into liquid fuels are still challenged by slow mass transfer and sluggish catalytic kinetics at the gas-liquid-solid boundary. Here, we report that gas-permeable metal-organic framework (MOF) membranes can modify the electronic structures and catalytic properties of metal single-atoms (SAs) to promote the diffusion, activation, and reduction of gas molecules (e.g. CO 2, O 2 ) and produce liquid fuels under visible light and mild conditions. With Ir SAs as active centers, the defect-engineered MOF (e.g. activated NH 2 -UiO-66) particles can reduce CO 2 to HCOOH with an apparent quantum efficiency (AQE) of 2.51% at 420 nm on the gas-liquid-solid reaction interface. With promoted gas diffusion at the porous gas-solid interfaces, the gas-permeable SA/MOF membranes can directly convert humid CO 2 gas into HCOOH with a near-unity selectivity and a significantly increased AQE of 15.76% at 420 nm. A similar strategy can be applied to the photocatalytic O 2 -to-H 2 O 2 conversions, suggesting the wide applicability of our catalyst and reaction interface designs. Photoreduction of permanent gas faces challenges in reactant diffusion and activation at the three-phase interface. Here the authors showed porous metal-organic framework membranes decorated by metal single atoms can boost the photoreduction of CO 2 and O 2 at the high-throughput gas-solid interface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-22991-7