Drying and Wetting Effects on Carbon Dioxide Release from Organic Horizons
Drying and wetting cycles of O horizon in forest soils have not received much attention, partly due to methodological limitations for nondestructive monitoring of the O horizon water content. The objective of this study was to determine the importance of moisture limitations in the O horizon of a te...
Saved in:
Published in | Soil Science Society of America journal Vol. 67; no. 6; pp. 1888 - 1896 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Madison
Soil Science Society
01.11.2003
Soil Science Society of America American Society of Agronomy |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Drying and wetting cycles of O horizon in forest soils have not received much attention, partly due to methodological limitations for nondestructive monitoring of the O horizon water content. The objective of this study was to determine the importance of moisture limitations in the O horizon of a temperate forest on summertime soil respiration. We measured soil respiration in three replicated plots in a mixed deciduous forest at Harvard Forest, Massachusetts, weekly from May to October 2001. Direct Current (DC) half‐bridge sensors that had been calibrated using destructive samples of the Oi and Oe/Oa horizons were placed in the Oi and Oe/Oa horizons to record hourly changes of gravimetric water contents. Soil temperature explained 47% of the variation in soil respiration using the Arrhenius equation. The residuals of the temperature model were linearly correlated with gravimetric water content of the Oi horizon (r2 = 0.72, P < 0.0001) and Oe/Oa horizon (r2 = 0.56, P < 0.001), indicating that temporal variation in soil respiration can be partly explained by water content of the O horizon. Additionally, a laboratory study was performed to evaluate drying/wetting cycles of the O horizon at constant temperature. Even small simulated rainfall amounts of 0.5 mm significantly increase CO2 flux from dry O horizon within a few minutes. The duration of CO2 pulses increased with the amount of applied water, lasting from a few hours to days. A strong correlation between CO2 release and water content of the O horizons demonstrates a clear regulatory role of litter water content on decomposition within the O horizons. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0361-5995 1435-0661 |
DOI: | 10.2136/sssaj2003.1888 |