An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling [version 1; peer review: awaiting peer review]
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the...
Saved in:
Published in | F1000 research Vol. 9; p. 653 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Faculty of 1000 Ltd
2020
F1000 Research Limited F1000 Research Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38. |
---|---|
AbstractList | The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38. The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38. |
Author | Han, Jiahuai Wu, Jianfeng Silke, John |
Author_xml | – sequence: 1 givenname: Jiahuai surname: Han fullname: Han, Jiahuai email: jiahuaihan@xmu.edu.cn organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China – sequence: 2 givenname: Jianfeng surname: Wu fullname: Wu, Jianfeng organization: State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China – sequence: 3 givenname: John orcidid: 0000-0002-7611-5774 surname: Silke fullname: Silke, John email: silke@wehi.edu.au organization: Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia |
BookMark | eNqFks9u1DAQxiNUREvpKyBLXDiwi-114rggpKriT6VKXOCEkDVxJlsviR1s71Z9Il4TZ3dVdXvpyZbn933zaTwviyPnHRbFa0bnjFd1_b5jlNKAESGYmznnVPE5e1accCqqGROUHz24HxdnMa6ygCq1qLh8URwveMV4TeuT4t-FI36DYWPxlviODDAM0FtwZFzUZLDJL9HNwCS7gYQtGYNPaB35Yx1EjO-IQZcC9CTgct1D8iFONgb7nsSUI0YCrs1Vg2MukmiXLvu7JfmVu0brHWEfyIgYMjOFOCdwCzZNxIPX36-K5x30Ec_252nx88vnH5ffZtffv15dXlzPTMkkm7Ugqo6XJRWlaVoFHYdOggClBEUu6qaWZSWZoqaVUhoqa2ybykjVKCHaBhanxdXOt_Ww0mOwA4Q77cHq7YMPSw0hWdOjZkJyYCgqRo1oS6XKhjVmatRIWrZl9vq08xrXzYDtflIHpocVZ2_00m-0XHChxGTwdm8Q_N81xqQHG6fRgkO_jpoLpiTjsqwz-uYRuvLrkEe9oyitOWeZqnaUCT7GgN19GEb1drX0wWrp7WrpSfjxkdDYBCl_Xw5u-6fl5zt5B2bdp7sJ0vfUE-L_J1PuGA |
CitedBy_id | crossref_primary_10_3390_cancers15030861 crossref_primary_10_1016_j_bbamcr_2020_118917 crossref_primary_10_1186_s13075_022_02850_6 crossref_primary_10_3390_ijms21207524 crossref_primary_10_2174_1389557521666210902162120 crossref_primary_10_13005_bbra_3249 crossref_primary_10_1016_j_envres_2024_118634 crossref_primary_10_1186_s13229_024_00595_4 crossref_primary_10_1002_mog2_53 crossref_primary_10_1016_j_ejphar_2022_175159 crossref_primary_10_3390_ijms252011235 crossref_primary_10_62347_AQEW8179 crossref_primary_10_1016_j_mcpro_2023_100527 crossref_primary_10_3390_ijms22116041 crossref_primary_10_3390_ijms24076096 crossref_primary_10_3389_fcell_2022_949382 crossref_primary_10_1038_s41598_024_71859_5 crossref_primary_10_1016_j_tcb_2022_06_004 crossref_primary_10_3390_ijms21176102 crossref_primary_10_1007_s12011_021_02643_z crossref_primary_10_1097_PR9_0000000000000898 crossref_primary_10_1073_pnas_2024562118 crossref_primary_10_3390_ijms252212167 crossref_primary_10_3389_fcell_2025_1522294 crossref_primary_10_3390_ijms241311168 crossref_primary_10_3390_ijms252011119 crossref_primary_10_3389_fchem_2024_1363354 crossref_primary_10_1016_j_jbc_2025_108281 crossref_primary_10_1080_15384101_2024_2335051 crossref_primary_10_1016_j_marenvres_2024_106695 crossref_primary_10_2147_DDDT_S300988 crossref_primary_10_3390_ijms23073607 crossref_primary_10_1038_s41467_023_43763_5 crossref_primary_10_31083_j_fbl2701031 crossref_primary_10_3389_fnmol_2023_1172366 crossref_primary_10_3390_ijms22084183 crossref_primary_10_1038_s41467_022_34969_0 crossref_primary_10_3390_molecules29184354 crossref_primary_10_3390_cancers16020256 crossref_primary_10_3390_cells10123466 crossref_primary_10_1016_j_metop_2021_100153 crossref_primary_10_15789_1563_0625_MCF_3037 crossref_primary_10_1038_s41598_024_66568_y crossref_primary_10_3390_biomedicines12030502 crossref_primary_10_1111_jcmm_17870 crossref_primary_10_2147_JPR_S488494 crossref_primary_10_3390_ijms23010370 crossref_primary_10_1002_ccs3_12039 crossref_primary_10_3389_fbioe_2023_1268048 crossref_primary_10_1152_ajpgi_00049_2023 crossref_primary_10_3390_ijms241512442 crossref_primary_10_1007_s12013_024_01475_7 crossref_primary_10_1016_j_prmcm_2025_100597 crossref_primary_10_1111_cpr_13438 crossref_primary_10_3389_fpsyt_2022_1008124 crossref_primary_10_1038_s41418_022_01081_1 crossref_primary_10_1093_molbev_msac177 crossref_primary_10_1186_s12864_023_09446_7 crossref_primary_10_1038_s41598_022_07024_7 crossref_primary_10_1098_rsob_220314 crossref_primary_10_3390_cancers15030611 crossref_primary_10_1002_tox_24486 crossref_primary_10_1038_s41580_020_00322_w crossref_primary_10_1007_s10753_023_01858_7 crossref_primary_10_1016_j_bmcl_2021_128056 crossref_primary_10_15252_embr_202052254 crossref_primary_10_3389_fphar_2025_1542204 crossref_primary_10_1016_j_placenta_2024_11_001 crossref_primary_10_1007_s10499_023_01084_w crossref_primary_10_2174_0113892010303097240605105013 crossref_primary_10_3390_ph16091286 crossref_primary_10_7554_eLife_86200 crossref_primary_10_1002_oby_23552 crossref_primary_10_1021_acs_jcim_4c00803 crossref_primary_10_1128_mbio_01784_23 crossref_primary_10_3390_cells13131082 crossref_primary_10_3389_fphar_2025_1514486 crossref_primary_10_3390_cells12101387 crossref_primary_10_1186_s40104_024_01002_x |
Cites_doi | 10.1128/mcb.23.23.8890-8901.2003 10.1038/386296a0 10.1084/jem.20031771 10.1038/nm.3957 10.1126/science.275.5296.90 10.1038/s41419-018-0467-3 10.1038/ni.3665 10.1126/science.1156037 10.1074/jbc.272.45.28373 10.1074/jbc.272.20.13229 10.1038/emboj.2011.492 10.4049/jimmunol.161.1.467 10.1128/mcb.24.7.3057-3067.2004 10.1128/MCB.24.16.6957-6966.2004 10.1074/jbc.M111.284224 10.3892/mmr.2014.2598 10.1074/jbc.M309457200 10.1016/j.celrep.2015.07.045 10.1074/jbc.M901004200 10.1158/0008-5472.CAN-15-3062 10.1182/blood-2012-05-432674 10.1126/science.aah6205 10.1097/00003246-200004001-00008 10.18632/oncotarget.2717 10.1016/0092-8674(94)90277-1 10.3389/fcimb.2018.00337 10.1016/j.febslet.2010.10.057 10.2174/187152011794941190 10.1084/jem.20120677 10.1038/sj.cr.7290257 10.1016/j.gene.2004.04.004 10.1038/nm.2449 10.1038/ncb3608 10.1016/j.bbrc.2004.01.078 10.1128/mcb.16.3.1247 10.1074/jbc.273.3.1741 10.1007/s10522-015-9610-z 10.1074/jbc.M110.182188 10.1074/jbc.M101049200 10.1093/emboj/18.23.6845 10.1167/iovs.16-21170 10.1016/s1074-7613(00)80449-5 10.1371/journal.ppat.1007283 10.1074/jbc.M107623200 10.1002/art.24264 10.1038/s41467-017-01609-x 10.4161/cc.25100 10.1002/jcp.24870 10.1038/s41467-018-04010-4 10.1074/jbc.272.24.15167 10.1016/j.cellsig.2009.06.009 10.1016/j.phrs.2017.01.026 10.1074/jbc.273.21.12901 10.1093/emboj/cdg552 10.1073/pnas.93.9.4355 10.1074/jbc.M110.123612 10.1038/srep12579 10.1038/ni1177 10.1152/ajpcell.1998.275.2.C527 10.1074/jbc.M006324200 10.1007/s00726-017-2404-7 10.1038/sj.onc.1202738 10.3390/ijms19092482 10.1016/j.cell.2018.09.055 10.1074/jbc.272.48.30122 10.22203/ecm.v030a07 10.1182/blood.V92.6.1859 10.1093/nar/gkq1178 10.1074/jbc.273.38.24285 10.1053/j.gastro.2010.01.005 10.1016/j.molcel.2006.07.014 10.1038/cddis.2017.488 10.1093/emboj/16.7.1620 10.1038/cmi.2016.49 10.1073/pnas.180316397 10.1016/j.leukres.2013.01.022 10.1074/jbc.M703857200 10.1074/jbc.M111696200 10.1128/mcb.19.1.21 10.1016/j.febslet.2005.04.086 10.3390/ijms20081826 10.1371/journal.pbio.2004455 10.1128/mcb.22.10.3389-3403.2002 10.1038/sj.emboj.7600528 10.1016/j.cell.2006.11.050 10.1111/cpr.12314 10.1073/pnas.0804868105 10.3389/fimmu.2018.00774 10.1074/jbc.M500620200 10.1002/hep.31020 10.1074/jbc.271.6.2886 10.1128/MCB.00210-09 10.1016/s0092-8674(00)00027-1 10.1074/jbc.M606568200 10.1182/blood.V96.5.1844 10.1042/BJ20031559 10.1128/MCB.06327-11 10.1038/ncb2168 10.1007/s10522-012-9407-2 10.1210/me.2004-0528 10.1016/j.molcel.2017.05.003 10.1016/j.tibs.2007.06.007 10.1074/jbc.273.48.32111 10.1038/ni.3206 10.7554/eLife.26947 10.1016/0014-5793(94)80111-8 10.1073/pnas.96.24.13956 10.1016/s0898-6568(00)00120-0 10.1128/MCB.25.7.2733-2743.2005 10.1074/jbc.272.33.20490 10.1074/jbc.M101981200 10.1038/ncomms10477 10.1016/j.molcel.2013.04.013 10.1172/JCI65124 10.1038/emboj.2011.69 10.1016/j.molcel.2010.12.032 10.4049/jimmunol.1801221 10.1038/sj.emboj.7600981 10.1016/j.molcel.2015.01.004 10.1038/nchembio.1788 10.1074/jbc.M113.543165 10.1016/j.phymed.2019.152864 10.1002/pmic.200800847 10.1016/j.devcel.2009.05.009 10.1016/j.jhep.2019.03.014 10.1074/jbc.M603038200 10.1186/s13024-018-0273-5 10.1074/jbc.273.45.29661 10.1038/s41419-018-0624-8 10.1093/emboj/17.15.4426 10.1038/369242a0 10.1128/MCB.00554-18 10.1128/mcb.22.11.3892-3904.2002 10.1016/j.ahj.2015.02.012 10.1038/ncb3581 10.1016/j.molcel.2010.01.034 10.1146/annurev-pathol-121808-102144 10.1038/emboj.2012.122 10.1182/blood-2008-04-153304 10.1242/jcs.032854 10.1128/MCB.00239-12 10.1016/0092-8674(93)90383-2 10.1002/mc.20825 10.4049/jimmunol.161.7.3225 10.1074/jbc.275.18.13872 10.1038/sj.onc.1209737 10.4049/jimmunol.1201007 10.4161/cc.2.5.482 10.1038/sj.onc.1208040 10.1016/S1097-2765(05)00014-6 10.1074/jbc.M406701200 10.1016/j.jhep.2014.12.032 10.1038/sj.emboj.7600799 10.1111/resp.12189 10.1128/MCB.21.22.7545-7557.2001 10.4049/jimmunol.180.7.5075 10.1002/j.1460-2075.1995.tb07189.x 10.1126/science.280.5363.599 10.1371/journal.pbio.2004225 10.1161/01.RES.0000083490.43943.85 10.1038/ncb3614 10.1073/pnas.1015013108 10.1128/mcb.17.5.2360 10.1042/BJ20021127 10.1074/jbc.274.21.15115 10.1038/nsmb1316 10.1016/s1097-2765(01)00189-7 10.1016/j.molcel.2016.08.015 10.1074/jbc.271.30.17920 10.1038/nbt0411-301 10.1016/j.biocel.2007.06.013 10.1084/jem.191.5.859 10.1074/mcp.M110.003665 10.1038/ni.2981 10.1038/emboj.2011.391 10.1126/science.7914033 10.1093/emboj/16.16.4973 10.1083/jcb.200307081 10.1016/j.ccell.2016.08.009 10.1128/MCB.00409-17 10.1038/ni.1609 10.1093/emboj/16.8.1909 10.1016/j.molcel.2005.10.021 10.1128/MCB.02117-07 10.1186/2044-5040-2-5 10.3389/fimmu.2017.01259 10.1128/mcb.20.13.4543-4552.2000 10.1074/jbc.271.23.13675 10.1074/jbc.M111.233122 10.1126/science.272.5266.1347 10.1074/jbc.272.33.20936 10.1158/0008-5472.CAN-19-0049 10.1038/s41467-018-05078-8 10.1074/jbc.M109.098681 10.1158/0008-5472.CAN-10-2914 10.1074/jbc.M402224200 10.1074/jbc.273.8.4449 10.1074/jbc.M108145200 10.1006/bbrc.1997.6849 10.1093/emboj/17.12.3372 10.1038/sj.emboj.7601657 10.15252/embj.201591857 10.1074/jbc.272.6.3296 10.1016/j.cell.2008.11.018 10.1371/journal.pbio.2004111 10.1038/sj.emboj.7600578 10.1007/s00018-016-2188-z 10.1038/d41586-017-07291-9 10.1126/science.270.5240.1326 10.1038/372739a0 10.1016/s0960-9822(02)00649-8 10.1016/j.febslet.2008.06.051 10.1016/j.cell.2011.05.029 10.1093/jb/mvu040 10.1006/bbrc.1996.1662 10.1074/jbc.270.47.27995 10.1126/science.7839144 10.1016/j.atherosclerosis.2015.03.039 10.1038/sj.emboj.7600056 10.1074/jbc.M909934199 10.1016/s1097-2765(01)00390-2 10.1089/jir.2013.0146 10.1093/emboj/16.8.1921 10.1074/jbc.M512627200 10.1074/jbc.271.14.8488 10.1128/MCB.06163-11 10.1038/s41586-019-1112-8 10.1074/jbc.274.18.12229 10.1074/jbc.M408795200 10.1242/jcs.085902 10.1073/pnas.192264999 10.1016/0092-8674(94)90278-x 10.1006/bbrc.1998.9250 10.1101/gad.290346.116 10.1182/blood-2004-09-3708 10.1038/ng1378 10.1128/mcb.22.16.5835-5845.2002 10.1093/emboj/16.2.295 10.1042/BJ20071149 10.1046/j.1471-4159.1997.69010191.x 10.1074/jbc.270.13.7420 10.1126/science.1067289 10.1073/pnas.1713301115 10.1038/s41419-018-0722-7 10.1182/blood-2011-01-333039 10.1038/onc.2010.442 10.1093/emboj/20.17.5022 10.1074/jbc.M105945200 10.4161/cc.5.15.3006 10.1016/s0092-8674(00)80339-6 10.1016/j.cellsig.2011.12.013 10.1038/ncb1749 10.1093/emboj/17.16.4744 10.1038/sj.onc.1206730 |
ContentType | Journal Article |
Copyright | Copyright: © 2020 Han J et al. Copyright: © 2020 Han J et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright: © 2020 Han J et al. 2020 |
Copyright_xml | – notice: Copyright: © 2020 Han J et al. – notice: Copyright: © 2020 Han J et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright: © 2020 Han J et al. 2020 |
DBID | C-E CH4 AAYXX CITATION 3V. 7X7 7XB 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.12688/f1000research.22092.1 |
DatabaseName | F1000Research Faculty of 1000 CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Women's Studies |
EISSN | 2046-1402 |
ExternalDocumentID | oai_doaj_org_article_1472a1e4610c4d5995b1bc940eb705d5 PMC7324945 10_12688_f1000research_22092_1 |
GrantInformation_xml | – fundername: National Health and Medical Research Council grantid: 1107149 – fundername: The 111 Project grantid: B12001 – fundername: National Natural Science Foundation of China grantid: 81788101/31420103910/81630042 |
GroupedDBID | 3V. 53G 5VS 7X7 88I 8FE 8FH 8FI 8FJ ABUWG ACGOD ACPRK ADACO ADBBV ADRAZ AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBAFP BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C-E CH4 DIK DWQXO FRP FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M7P OK1 PIMPY PQEST PQQKQ PQUKI PRINS PROAC RPM AAFWJ AAYXX AFPKN ALIPV AOIJS CCPQU CITATION HMCUK M48 M~E PGMZT PHGZM PHGZT UKHRP W2D 7XB 8FK K9. PKEHL PQGLB Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5171-da46f255045cbd9af2af7a4a9940e248b87567190cd777c078edb6c79b944dba3 |
IEDL.DBID | M48 |
ISSN | 2046-1402 |
IngestDate | Wed Aug 27 01:21:58 EDT 2025 Thu Aug 21 14:36:55 EDT 2025 Fri Jul 11 01:11:34 EDT 2025 Fri Jul 25 11:56:54 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 Tue Jul 01 04:27:13 EDT 2025 Mon Jan 18 12:19:31 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | p38 MAPK inflammation signalling |
Language | English |
License | http://creativecommons.org/licenses/by/4.0/: This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5171-da46f255045cbd9af2af7a4a9940e248b87567190cd777c078edb6c79b944dba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 No competing interests were disclosed. |
ORCID | 0000-0002-7611-5774 |
OpenAccessLink | https://www.proquest.com/docview/2419008221?pq-origsite=%requestingapplication% |
PMID | 32612808 |
PQID | 2419008221 |
PQPubID | 2045578 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1472a1e4610c4d5995b1bc940eb705d5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7324945 proquest_miscellaneous_2419712758 proquest_journals_2419008221 crossref_primary_10_12688_f1000research_22092_1 crossref_citationtrail_10_12688_f1000research_22092_1 faculty1000_research_10_12688_f1000research_22092_1 |
ProviderPackageCode | C-E CH4 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: London, UK |
PublicationTitle | F1000 research |
PublicationYear | 2020 |
Publisher | Faculty of 1000 Ltd F1000 Research Limited F1000 Research Ltd |
Publisher_xml | – name: Faculty of 1000 Ltd – name: F1000 Research Limited – name: F1000 Research Ltd |
References | D Barsyte-Lovejoy (ref-64) 2002; 277 S Hayes (ref-104) 2003; 22 Z Li (ref-8) 1996; 228 J Page (ref-126) 2004; 279 M Cardone (ref-240) 1997; 90 S Huang (ref-239) 1997; 6 B Derijard (ref-24) 1995; 267 N Ronkina (ref-190) 2019; 203 T Morooka (ref-215) 1998; 273 M Giardino Torchia (ref-41) 2018; 115 J Mudgett (ref-121) 2000; 97 V Sørensen (ref-158) 2008; 28 C Huang (ref-166) 2004; 164 C Simone (ref-109) 2004; 36 A Gasser (ref-159) 2010; 285 M Allen (ref-118) 2000; 191 S Lee (ref-177) 2010; 285 M Suelves (ref-96) 2004; 23 E Wong (ref-122) 2009; 17 K Saha (ref-212) 2014; 289 M Cahill (ref-238) 1996; 13 M Humar (ref-92) 2007; 39 D Bulavin (ref-69) 1999; 18 J Obergasteiger (ref-249) 2018; 13 K Makni-Maalej (ref-174) 2012; 189 B Gonzalez-Teran (ref-203) 2013; 123 A Freund (ref-232) 2011; 30 K Naka (ref-226) 2004; 279 O Casanovas (ref-135) 2000; 275 N Matesanz (ref-219) 2018; 16 M Joaquin (ref-137) 2012; 31 J Hong (ref-108) 2011; 71 N Ronkina (ref-189) 2011; 39 X Zhang (ref-255) 2015; 5 M Manetsch (ref-46) 2012; 24 S Chandrasekaran (ref-142) 2011; 31 A Lanna (ref-222) 2014; 15 T Moriguchi (ref-27) 1996; 271 B Cai (ref-139) 2006; 281 C Tiedje (ref-187) 2014; 34 Y Tan (ref-63) 1996; 15 M Salome (ref-246) 2018; 9 Y Jing (ref-221) 2015; 62 A Slawinska-Brych (ref-242) 2013; 37 B Zhang (ref-233) 2018; 9 S Forcales (ref-110) 2012; 31 S Zhang (ref-220) 2018; 16 R Adams (ref-120) 2000; 6 J Knight (ref-149) 2012; 2 M McLaughlin (ref-54) 1996; 271 Z Guan (ref-191) 1998; 273 Y Li (ref-216) 2000; 12 A Waskiewicz (ref-57) 1997; 16 Y Chen (ref-52) 2018; 9 G Liu (ref-48) 2013; 121 P Mittelstadt (ref-37) 2009; 284 G Martin (ref-32) 1995; 14 F Lluis (ref-127) 2005; 24 R Kaur (ref-78) 2005; 280 S Morillo (ref-85) 2012; 32 A Yee (ref-210) 2004; 336 I Foltz (ref-17) 1997; 272 M Zheng (ref-22) 2011; 13 A Gubern (ref-209) 2016; 64 K Ho (ref-88) 2012; 287 M Deak (ref-56) 1998; 17 N Moran (ref-259) 2011; 29 W Cao (ref-217) 2001; 276 S Rampalli (ref-73) 2007; 14 X Gong (ref-15) 2010; 584 K Mansky (ref-95) 2002; 277 L Qiao (ref-82) 2006; 281 G Mace (ref-151) 2005; 24 A Hongo (ref-230) 2017; 58 M Xiu (ref-128) 2003; 23 H Fan (ref-253) 2019; 58 J Raingeaud (ref-23) 1996; 16 X Wu (ref-113) 2011; 286 S Luk (ref-245) 2019 Z Xu (ref-188) 2015; 230 J Salvador (ref-18) 2005; 6 K Ramsauer (ref-74) 2002; 99 J Lee (ref-75) 2011; 17 Z Niu (ref-213) 2017; 50 P Rao (ref-124) 2009; 9 P Briata (ref-148) 2005; 20 P Sun (ref-19) 2007; 128 Y Sekine (ref-99) 2011; 124 M Alam (ref-40) 2018; 16 A Saurin (ref-80) 2008; 10 R Haq (ref-224) 2002; 62 C Lu (ref-145) 2008; 582 L Jirmanova (ref-39) 2011; 118 M Alam (ref-244) 2015; 21 K Sii-Felice (ref-93) 2005; 579 A Al-Ayoubi (ref-150) 2012; 32 J Lee (ref-5) 1994; 372 D Khiem (ref-197) 2008; 105 I Mikkola (ref-102) 1999; 274 O Casanovas (ref-136) 2004; 23 Y Xu (ref-116) 2014; 5 A Ittner (ref-204) 2012; 209 Y Dondelinger (ref-181) 2017; 19 Y Jiang (ref-9) 1997; 272 A Cuadrado (ref-129) 2007; 26 T Tanoue (ref-45) 2001; 276 K Ryu (ref-105) 2019; 79 N Ku (ref-164) 2002; 277 A Craxton (ref-196) 1998; 161 E Williamson (ref-84) 2005; 105 S Kumar (ref-10) 1997; 235 P Puigserver (ref-130) 2001; 8 T Tanos (ref-87) 2005; 280 S Winograd-Katz (ref-157) 2006; 25 C Dillon (ref-184) 2016; 73 R Visconti (ref-107) 2000; 96 I Jaco (ref-180) 2017; 66 H Ma (ref-125) 2019; 39 M Otsuka (ref-200) 2010; 138 T Maeda (ref-50) 1994; 369 M Zhao (ref-94) 1999; 19 R Fukunaga (ref-58) 1997; 16 A Khurana (ref-178) 2006; 281 S Cho (ref-44) 2017; 8 P Cheung (ref-154) 2003; 22 P Xu (ref-162) 2010; 37 W Li (ref-117) 2017; 8 H Tivey (ref-225) 2013; 14 N Lalaoui (ref-179) 2016; 30 A Molnar (ref-207) 1997; 272 A Topolska-Wos (ref-47) 2017; 49 S Wiehler (ref-194) 2004; 315 W Cao (ref-218) 2004; 24 L Liang (ref-201) 2013; 18 Suppl 3 L Jirmanova (ref-38) 2009; 113 M Alvarado-Kristensson (ref-140) 2004; 199 G Sabio (ref-168) 2005; 24 J Han (ref-62) 1997; 386 B Ge (ref-33) 2002; 295 J Han (ref-1) 1993; 268 A Whitmarsh (ref-66) 1997; 17 A Zauberman (ref-16) 1999; 18 P Gomez del Arco (ref-72) 2000; 275 S Danckwardt (ref-144) 2011; 41 X Wang (ref-68) 1996; 272 H Zheng (ref-115) 2013; 50 P Kovarik (ref-106) 1999; 96 J Linares (ref-175) 2015; 12 A Brichkina (ref-123) 2016; 30 H Mendoza (ref-155) 2008; 409 X Wang (ref-208) 2000; 20 H Sun (ref-42) 1993; 75 T Anwar (ref-111) 2018; 9 F Zhang (ref-251) 2018; 8 K Takenaka (ref-206) 1998; 280 T Obata (ref-13) 2000; 28 L Li (ref-100) 2015; 11 J Hedges (ref-163) 1998; 275 Q Yang (ref-143) 2015; 57 N Freshney (ref-4) 1994; 78 G Sumara (ref-61) 2009; 136 E Dolgin (ref-243) 2017; 551 G Kumari (ref-211) 2013; 12 Y Jiang (ref-6) 1996; 271 S Hirai (ref-29) 1997; 272 A Cuenda (ref-81) 1997; 16 Y Zhou (ref-195) 2018; 15 N Kelkar (ref-153) 2005; 25 A Lanna (ref-12) 2017; 18 L New (ref-55) 1998; 17 M Takekawa (ref-49) 1998; 17 R Bikkavilli (ref-60) 2008; 121 Z Xia (ref-236) 1995; 270 W Tan (ref-241) 2014; 10 A Miller (ref-89) 2005; 19 S Bagrodia (ref-31) 1995; 270 J Chen (ref-173) 2018; 9 D Thapa (ref-34) 2018; 38 R Delston (ref-131) 2011; 30 M Genovese (ref-205) 2009; 60 J Han (ref-25) 1996; 271 L Bachegowda (ref-256) 2016; 76 R Janknecht (ref-67) 1997; 16 B Gonzalez-Teran (ref-202) 2016; 35 M Zakrzewska (ref-156) 2019; 20 W Wang (ref-223) 2002; 22 A Seifert (ref-141) 2009; 21 J Kummer (ref-237) 1997; 272 M Menon (ref-182) 2017; 19 J Raingeaud (ref-11) 1995; 270 K Gibbs (ref-247) 2018; 9 E Hall (ref-171) 2010; 9 M Gianni (ref-132) 2006; 25 C Huang (ref-70) 1999; 274 A Badger (ref-192) 1998; 161 J Da Silva (ref-193) 1997; 272 I del Barco Barrantes (ref-185) 2011; 108 W Macfarlane (ref-90) 1997; 272 S Zhong (ref-146) 2000; 275 X Qi (ref-51) 2007; 282 H Lee (ref-86) 2002; 22 S Liu (ref-214) 2018; 7 A Tomas-Loba (ref-14) 2019; 568 A Khaled (ref-160) 2001; 21 M Tanno (ref-36) 2003; 93 T Yang (ref-98) 2002; 22 C Lechner (ref-7) 1996; 93 M Ortuno (ref-101) 2010; 285 A Koh (ref-176) 2018; 175 G Harada (ref-229) 2014; 156 T Thornton (ref-59) 2008; 320 A Barascu (ref-165) 2012; 31 B Pierrat (ref-77) 1998; 273 D Jones (ref-79) 2006; 23 J Coppe (ref-235) 2010; 5 M Matsumoto (ref-97) 2004; 279 A Dimozi (ref-227) 2015; 30 Y Li (ref-254) 2017; 119 T Zarubin (ref-21) 2005; 15 V Lafarga (ref-147) 2009; 29 C Parker (ref-167) 1998; 249 J Han (ref-2) 1994; 265 J Han (ref-231) 2007; 32 S Katz (ref-91) 2002; 368 C Reynolds (ref-169) 1997; 69 H Emami (ref-258) 2015; 240 J Rouse (ref-3) 1994; 78 D Alimbetov (ref-234) 2016; 17 M O'Donoghue (ref-257) 2015; 169 K Ohkusu-Tsukada (ref-35) 2004; 24 P Barger (ref-103) 2001; 276 J Zhu (ref-252) 2017; 8 K Tamura (ref-119) 2000; 102 Y Nagata (ref-20) 1998; 92 M Galibert (ref-71) 2001; 20 A Borodkina (ref-228) 2016; 58 A Ittner (ref-170) 2016; 354 C Nunes-Xavier (ref-43) 2011; 11 H Min (ref-138) 2012; 51 A Börsch-Haubold (ref-161) 1998; 273 K Seong (ref-112) 2011; 145 A Goloudina (ref-133) 2003; 2 X Zhang (ref-199) 2019; 71 M Takekawa (ref-30) 1997; 16 T Bird (ref-53) 1994; 338 J Silke (ref-183) 2015; 16 P Wilker (ref-198) 2008; 9 H Enslen (ref-26) 1998; 273 J Engelman (ref-83) 1998; 273 C Hazzalin (ref-65) 1996; 6 Y Kang (ref-186) 2008; 180 V Cavalli (ref-152) 2001; 7 K Lin (ref-76) 2017; 19 C Fang (ref-248) 2018; 14 M Lemaire (ref-134) 2006; 5 H Ichijo (ref-28) 1997; 275 Y Kuma (ref-172) 2004; 379 P Wang (ref-250) 2018; 19 B Gonzalez-Teran (ref-114) 2016; 7 |
References_xml | – volume: 23 start-page: 8890-901 year: 2003 ident: ref-128 article-title: The transcriptional repressor HBP1 is a target of the p38 mitogen-activated protein kinase pathway in cell cycle regulation. publication-title: Mol Cell Biol. doi: 10.1128/mcb.23.23.8890-8901.2003 – volume: 386 start-page: 296-299 year: 1997 ident: ref-62 article-title: Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. publication-title: Nature. doi: 10.1038/386296a0 – volume: 199 start-page: 449-58 year: 2004 ident: ref-140 article-title: p38-MAPK signals survival by phosphorylation of caspase-8 and caspase-3 in human neutrophils. publication-title: J Exp Med. doi: 10.1084/jem.20031771 – volume: 21 start-page: 1337-1343 year: 2015 ident: ref-244 article-title: Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. publication-title: Nat Med. doi: 10.1038/nm.3957 – volume: 275 start-page: 90-94 year: 1997 ident: ref-28 article-title: Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. publication-title: Science. doi: 10.1126/science.275.5296.90 – volume: 58 start-page: 429-435 year: 2016 ident: ref-228 article-title: Role of P38 Map-Kinase in the Stress-Induced Senescence Progression of Human Endometrium-Derived Mesenchymal Stem Cells. publication-title: Tsitologiia. – volume: 9 start-page: 443 year: 2018 ident: ref-246 article-title: A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0467-3 – volume: 18 start-page: 354-363 year: 2017 ident: ref-12 article-title: A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. publication-title: Nat Immunol. doi: 10.1038/ni.3665 – volume: 320 start-page: 667-670 year: 2008 ident: ref-59 article-title: Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. publication-title: Science. doi: 10.1126/science.1156037 – volume: 272 start-page: 28373-80 year: 1997 ident: ref-193 article-title: Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. publication-title: J Biol Chem. doi: 10.1074/jbc.272.45.28373 – volume: 272 start-page: 13229-13235 year: 1997 ident: ref-207 article-title: Cdc42Hs, but not Rac1, inhibits serum-stimulated cell cycle progression at G1/S through a mechanism requiring p38/RK. publication-title: J Biol Chem. doi: 10.1074/jbc.272.20.13229 – volume: 31 start-page: 1080-1094 year: 2012 ident: ref-165 article-title: Oxidative stress induces an ATM-independent senescence pathway through p38 MAPK-mediated lamin B1 accumulation. publication-title: EMBO J. doi: 10.1038/emboj.2011.492 – volume: 161 start-page: 467-73 year: 1998 ident: ref-192 article-title: SB 203580 inhibits p38 mitogen-activated protein kinase, nitric oxide production, and inducible nitric oxide synthase in bovine cartilage-derived chondrocytes. publication-title: J Immunol. doi: 10.4049/jimmunol.161.1.467 – volume: 24 start-page: 3057-3067 year: 2004 ident: ref-218 article-title: p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. publication-title: Mol Cell Biol. doi: 10.1128/mcb.24.7.3057-3067.2004 – volume: 24 start-page: 6957-6966 year: 2004 ident: ref-35 article-title: Regulation of the maintenance of peripheral T-cell anergy by TAB1-mediated p38 alpha activation. publication-title: Mol Cell Biol. doi: 10.1128/MCB.24.16.6957-6966.2004 – volume: 287 start-page: 1545-1555 year: 2012 ident: ref-88 article-title: Phosphorylation of FOXO3a on Ser-7 by p38 promotes its nuclear localization in response to doxorubicin. publication-title: J Biol Chem. doi: 10.1074/jbc.M111.284224 – volume: 10 start-page: 3275-3281 year: 2014 ident: ref-241 article-title: Inhibition of the p38 MAPK pathway sensitizes human gastric cells to doxorubicin treatment in vitro and in vivo. publication-title: Mol Med Rep. doi: 10.3892/mmr.2014.2598 – volume: 279 start-page: 2030-2037 year: 2004 ident: ref-226 article-title: Stress-induced premature senescence in hTERT-expressing ataxia telangiectasia fibroblasts. publication-title: J Biol Chem. doi: 10.1074/jbc.M309457200 – volume: 12 start-page: 1339-1352 year: 2015 ident: ref-175 article-title: Amino Acid Activation of mTORC1 by a PB1-Domain-Driven Kinase Complex Cascade. publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.07.045 – volume: 284 start-page: 15469-15474 year: 2009 ident: ref-37 article-title: T cell receptor-mediated activation of p38{alpha} by mono-phosphorylation of the activation loop results in altered substrate specificity. publication-title: J Biol Chem. doi: 10.1074/jbc.M901004200 – volume: 76 start-page: 4841-4849 year: 2016 ident: ref-256 article-title: Pexmetinib: A Novel Dual Inhibitor of Tie2 and p38 MAPK with Efficacy in Preclinical Models of Myelodysplastic Syndromes and Acute Myeloid Leukemia. publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-3062 – volume: 121 start-page: 519-529 year: 2013 ident: ref-48 article-title: Phosphatase Wip1 negatively regulates neutrophil development through p38 MAPK-STAT1. publication-title: Blood. doi: 10.1182/blood-2012-05-432674 – volume: 354 start-page: 904-908 year: 2016 ident: ref-170 article-title: Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice. publication-title: Science. doi: 10.1126/science.aah6205 – volume: 28 start-page: N67-77 year: 2000 ident: ref-13 article-title: MAP kinase pathways activated by stress: the p38 MAPK pathway. publication-title: Crit Care Med. doi: 10.1097/00003246-200004001-00008 – volume: 5 start-page: 12555-12572 year: 2014 ident: ref-116 article-title: Phosphorylation of Tip60 by p38alpha regulates p53-mediated PUMA induction and apoptosis in response to DNA damage. publication-title: Oncotarget. doi: 10.18632/oncotarget.2717 – volume: 78 start-page: 1027-1037 year: 1994 ident: ref-3 article-title: A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. publication-title: Cell. doi: 10.1016/0092-8674(94)90277-1 – volume: 8 start-page: 337 year: 2018 ident: ref-251 article-title: Effective Pro-Inflammatory Induced Activity of GALT, a Conserved Antigen in A. Pleuropneumoniae, Improves the Cytokines Secretion of Macrophage via p38, ERK1/2 and JNK MAPKs Signal Pathway. publication-title: Front Cell Infect Microbiol. doi: 10.3389/fcimb.2018.00337 – volume: 584 start-page: 4711-4716 year: 2010 ident: ref-15 article-title: UV-induced interaction between p38 MAPK and p53 serves as a molecular switch in determining cell fate. publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.10.057 – volume: 11 start-page: 109-132 year: 2011 ident: ref-43 article-title: Dual-specificity MAP kinase phosphatases as targets of cancer treatment. publication-title: Anticancer Agents Med Chem. doi: 10.2174/187152011794941190 – volume: 209 start-page: 2229-2246 year: 2012 ident: ref-204 article-title: Regulation of PTEN Activity by p38δ-PKD1 Signaling in Neutrophils Confers Inflammatory Responses in the Lung. publication-title: J Exp Med. doi: 10.1084/jem.20120677 – volume: 15 start-page: 11-18 year: 2005 ident: ref-21 article-title: Activation and signaling of the p38 MAP kinase pathway. publication-title: Cell Res. doi: 10.1038/sj.cr.7290257 – volume: 336 start-page: 1-13 year: 2004 ident: ref-210 article-title: The HBP1 transcriptional repressor and the p38 MAP kinase: unlikely partners in G1 regulation and tumor suppression. publication-title: Gene. doi: 10.1016/j.gene.2004.04.004 – volume: 17 start-page: 1251-1260 year: 2011 ident: ref-75 article-title: p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. publication-title: Nat Med. doi: 10.1038/nm.2449 – volume: 19 start-page: 1237-1247 year: 2017 ident: ref-181 article-title: MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. publication-title: Nat Cell Biol. doi: 10.1038/ncb3608 – volume: 315 start-page: 463-70 year: 2004 ident: ref-194 article-title: p38 MAP kinase regulates rapid matrix metalloproteinase-9 release from eosinophils. publication-title: Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2004.01.078 – volume: 16 start-page: 1247-1255 year: 1996 ident: ref-23 article-title: MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. publication-title: Mol Cell Biol. doi: 10.1128/mcb.16.3.1247 – volume: 273 start-page: 1741-1748 year: 1998 ident: ref-26 article-title: Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. publication-title: J Biol Chem. doi: 10.1074/jbc.273.3.1741 – volume: 17 start-page: 305-315 year: 2016 ident: ref-234 article-title: Suppression of the senescence-associated secretory phenotype (SASP) in human fibroblasts using small molecule inhibitors of p38 MAP kinase and MK2. publication-title: Biogerontology. doi: 10.1007/s10522-015-9610-z – volume: 285 start-page: 41280-41289 year: 2010 ident: ref-177 article-title: Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation. publication-title: J Biol Chem. doi: 10.1074/jbc.M110.182188 – volume: 276 start-page: 27077-27082 year: 2001 ident: ref-217 article-title: β-Adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. publication-title: J Biol Chem. doi: 10.1074/jbc.M101049200 – volume: 18 start-page: 6845-6854 year: 1999 ident: ref-69 article-title: Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. publication-title: EMBO J. doi: 10.1093/emboj/18.23.6845 – volume: 58 start-page: 3325-3334 year: 2017 ident: ref-230 article-title: The Effect of a p38 Mitogen-Activated Protein Kinase Inhibitor on Cellular Senescence of Cultivated Human Corneal Endothelial Cells. publication-title: Invest Ophthalmol Vis Sci. doi: 10.1167/iovs.16-21170 – volume: 6 start-page: 739-749 year: 1997 ident: ref-239 article-title: Apoptosis signaling pathway in T cells is composed of ICE/Ced-3 family proteases and MAP kinase kinase 6b. publication-title: Immunity. doi: 10.1016/s1074-7613(00)80449-5 – volume: 14 start-page: e1007283 year: 2018 ident: ref-248 article-title: Prions activate a p38 MAPK synaptotoxic signaling pathway. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007283 – volume: 13 start-page: 2087-2096 year: 1996 ident: ref-238 article-title: CD95 (APO-1/Fas) induces activation of SAP kinases downstream of ICE-like proteases. publication-title: Oncogene. – volume: 277 start-page: 10775-10782 year: 2002 ident: ref-164 article-title: Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation. publication-title: J Biol Chem. doi: 10.1074/jbc.M107623200 – volume: 62 start-page: 5076-5082 year: 2002 ident: ref-224 article-title: Constitutive p38HOG mitogen-activated protein kinase activation induces permanent cell cycle arrest and senescence. publication-title: Cancer Res. – volume: 60 start-page: 317-320 year: 2009 ident: ref-205 article-title: Inhibition of p38: has the fat lady sung? publication-title: Arthritis Rheum. doi: 10.1002/art.24264 – volume: 8 start-page: 1763 year: 2017 ident: ref-117 article-title: Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. publication-title: Nat Commun. doi: 10.1038/s41467-017-01609-x – volume: 12 start-page: 2051-2060 year: 2013 ident: ref-211 article-title: A role for p38 in transcriptional elongation of p21CIP1 in response to Aurora B inhibition. publication-title: Cell Cycle. doi: 10.4161/cc.25100 – volume: 230 start-page: 1310-1320 year: 2015 ident: ref-188 article-title: Transcription factor MEF2C suppresses endothelial cell inflammation via regulation of NF-kappaB and KLF2. publication-title: J Cell Physiol. doi: 10.1002/jcp.24870 – volume: 9 start-page: 1723 year: 2018 ident: ref-233 article-title: The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1. publication-title: Nat Commun. doi: 10.1038/s41467-018-04010-4 – volume: 272 start-page: 15167-15173 year: 1997 ident: ref-29 article-title: MST/MLK2, a member of the mixed lineage kinase family, directly phosphorylates and activates SEK1, an activator of c-Jun N-terminal kinase/stress-activated protein kinase. publication-title: J Biol Chem. doi: 10.1074/jbc.272.24.15167 – volume: 21 start-page: 1626-33 year: 2009 ident: ref-141 article-title: p38alpha- and DYRK1A-dependent phosphorylation of caspase-9 at an inhibitory site in response to hyperosmotic stress. publication-title: Cell Signal. doi: 10.1016/j.cellsig.2009.06.009 – volume: 119 start-page: 137-148 year: 2017 ident: ref-254 article-title: 6-Gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-kappaB signalling. publication-title: Pharmacol Res. doi: 10.1016/j.phrs.2017.01.026 – volume: 273 start-page: 12901-8 year: 1998 ident: ref-191 article-title: Induction of cyclooxygenase-2 by the activated MEKK1 --> SEK1/MKK4 --> p38 mitogen-activated protein kinase pathway. publication-title: J Biol Chem. doi: 10.1074/jbc.273.21.12901 – volume: 22 start-page: 5793-5805 year: 2003 ident: ref-154 article-title: Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha. publication-title: EMBO J. doi: 10.1093/emboj/cdg552 – volume: 93 start-page: 4355-4359 year: 1996 ident: ref-7 article-title: ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.93.9.4355 – volume: 285 start-page: 31985-31994 year: 2010 ident: ref-101 article-title: p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. publication-title: J Biol Chem. doi: 10.1074/jbc.M110.123612 – volume: 5 start-page: 12579 year: 2015 ident: ref-255 article-title: Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. publication-title: Sci Rep. doi: 10.1038/srep12579 – volume: 6 start-page: 390-395 year: 2005 ident: ref-18 article-title: Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. publication-title: Nat Immunol. doi: 10.1038/ni1177 – volume: 275 start-page: C527-534 year: 1998 ident: ref-163 article-title: p38 mitogen-activated protein kinase expression and activation in smooth muscle. publication-title: Am J Physiol. doi: 10.1152/ajpcell.1998.275.2.C527 – volume: 275 start-page: 35091-35097 year: 2000 ident: ref-135 article-title: Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner. publication-title: J Biol Chem. doi: 10.1074/jbc.M006324200 – volume: 49 start-page: 1069-1076 year: 2017 ident: ref-47 article-title: MAP kinase p38 is a novel target of CacyBP/SIP phosphatase. publication-title: Amino Acids. doi: 10.1007/s00726-017-2404-7 – volume: 18 start-page: 3886-3893 year: 1999 ident: ref-16 article-title: Stress activated protein kinase p38 is involved in IL-6 induced transcriptional activation of STAT3. publication-title: Oncogene. doi: 10.1038/sj.onc.1202738 – volume: 19 start-page: 2482 year: 2018 ident: ref-250 article-title: SUMOs Mediate the Nuclear Transfer of p38 and p-p38 during Helicobacter Pylori Infection. publication-title: Int J Mol Sci. doi: 10.3390/ijms19092482 – volume: 175 start-page: 947-961.e917 year: 2018 ident: ref-176 article-title: Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. publication-title: Cell. doi: 10.1016/j.cell.2018.09.055 – volume: 272 start-page: 30122-30128 year: 1997 ident: ref-9 article-title: Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta. publication-title: J Biol Chem. doi: 10.1074/jbc.272.48.30122 – volume: 30 start-page: 89-102 year: 2015 ident: ref-227 article-title: Oxidative stress inhibits the proliferation, induces premature senescence and promotes a catabolic phenotype in human nucleus pulposus intervertebral disc cells. publication-title: Eur Cell Mater. doi: 10.22203/ecm.v030a07 – volume: 92 start-page: 1859-1869 year: 1998 ident: ref-20 article-title: Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation. publication-title: Blood. doi: 10.1182/blood.V92.6.1859 – volume: 39 start-page: 2503-2518 year: 2011 ident: ref-189 article-title: Stress induced gene expression: a direct role for MAPKAP kinases in transcriptional activation of immediate early genes. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1178 – volume: 273 start-page: 24285-24288 year: 1998 ident: ref-215 article-title: Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. publication-title: J Biol Chem. doi: 10.1074/jbc.273.38.24285 – volume: 138 start-page: 1255-65 year: 2010 ident: ref-200 article-title: Distinct effects of p38alpha deletion in myeloid lineage and gut epithelia in mouse models of inflammatory bowel disease. publication-title: Gastroenterology. doi: 10.1053/j.gastro.2010.01.005 – volume: 23 start-page: 685-695 year: 2006 ident: ref-79 article-title: Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. publication-title: Mol Cell. doi: 10.1016/j.molcel.2006.07.014 – volume: 8 start-page: e3113 year: 2017 ident: ref-252 article-title: Escin induces caspase-dependent apoptosis and autophagy through the ROS/p38 MAPK signalling pathway in human osteosarcoma cells in vitro and in vivo. publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.488 – volume: 16 start-page: 1620-1627 year: 1997 ident: ref-67 article-title: Convergence of MAP kinase pathways on the ternary complex factor Sap-1a. publication-title: EMBO J. doi: 10.1093/emboj/16.7.1620 – volume: 15 start-page: 246-259 year: 2018 ident: ref-195 article-title: p38alpha has an important role in antigen cross-presentation by dendritic cells. publication-title: Cell Mol Immunol. doi: 10.1038/cmi.2016.49 – volume: 97 start-page: 10454-10459 year: 2000 ident: ref-121 article-title: Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.180316397 – volume: 37 start-page: 586-594 year: 2013 ident: ref-242 article-title: Induction of apoptosis in multiple myeloma cells by a statin-thalidomide combination can be enhanced by p38 MAPK inhibition. publication-title: Leuk Res. doi: 10.1016/j.leukres.2013.01.022 – volume: 282 start-page: 31398-31408 year: 2007 ident: ref-51 article-title: p38alpha antagonizes p38gamma activity through c-Jun-dependent ubiquitin-proteasome pathways in regulating Ras transformation and stress response. publication-title: J Biol Chem. doi: 10.1074/jbc.M703857200 – volume: 277 start-page: 11077-11083 year: 2002 ident: ref-95 article-title: Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. publication-title: J Biol Chem. doi: 10.1074/jbc.M111696200 – volume: 19 start-page: 21-30 year: 1999 ident: ref-94 article-title: Regulation of the MEF2 family of transcription factors by p38. publication-title: Mol Cell Biol. doi: 10.1128/mcb.19.1.21 – volume: 579 start-page: 3547-3554 year: 2005 ident: ref-93 article-title: MafA transcription factor is phosphorylated by p38 MAP kinase. publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.04.086 – volume: 20 start-page: 1826 year: 2019 ident: ref-156 article-title: Crosstalk between p38 and Erk 1/2 in Downregulation of FGF1-Induced Signaling. publication-title: Int J Mol Sci. doi: 10.3390/ijms20081826 – volume: 16 start-page: e2004455 year: 2018 ident: ref-219 article-title: p38α blocks brown adipose tissue thermogenesis through p38δ inhibition. publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2004455 – volume: 22 start-page: 3389-3403 year: 2002 ident: ref-223 article-title: Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. publication-title: Mol Cell Biol. doi: 10.1128/mcb.22.10.3389-3403.2002 – volume: 24 start-page: 974-84 year: 2005 ident: ref-127 article-title: E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription. publication-title: EMBO J. doi: 10.1038/sj.emboj.7600528 – volume: 128 start-page: 295-308 year: 2007 ident: ref-19 article-title: PRAK is essential for ras-induced senescence and tumor suppression. publication-title: Cell. doi: 10.1016/j.cell.2006.11.050 – volume: 50 start-page: e12314 year: 2017 ident: ref-213 article-title: p38 MAPK pathway is essential for self-renewal of mouse male germline stem cells (mGSCs). publication-title: Cell Prolif. doi: 10.1111/cpr.12314 – volume: 105 start-page: 17067-72 year: 2008 ident: ref-197 article-title: A p38 MAPK-MEF2C pathway regulates B-cell proliferation. publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0804868105 – volume: 9 start-page: 774 year: 2018 ident: ref-52 article-title: RIOK-1 Is a Suppressor of the p38 MAPK Innate Immune Pathway in Caenorhabditis elegans. publication-title: Front Immunol. doi: 10.3389/fimmu.2018.00774 – volume: 280 start-page: 18842-18852 year: 2005 ident: ref-87 article-title: Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP-1 response to UV light. publication-title: J Biol Chem. doi: 10.1074/jbc.M500620200 – year: 2019 ident: ref-245 article-title: Deficiency in Embryonic Stem Cell Marker Reduced Expression 1 Activates Mitogen-Activated Protein Kinase Kinase 6-Dependent p38 Mitogen-Activated Protein Kinase Signaling to Drive Hepatocarcinogenesis. publication-title: Hepatology. doi: 10.1002/hep.31020 – volume: 271 start-page: 2886-2891 year: 1996 ident: ref-25 article-title: Characterization of the structure and function of a novel MAP kinase kinase (MKK6). publication-title: J Biol Chem. doi: 10.1074/jbc.271.6.2886 – volume: 29 start-page: 4341-4351 year: 2009 ident: ref-147 article-title: p38 Mitogen-activated protein kinase- and HuR-dependent stabilization of p21Cip1 mRNA mediates the G1/S checkpoint. publication-title: Mol Cell Biol. doi: 10.1128/MCB.00210-09 – volume: 102 start-page: 221-231 year: 2000 ident: ref-119 article-title: Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. publication-title: Cell. doi: 10.1016/s0092-8674(00)00027-1 – volume: 281 start-page: 35316-35326 year: 2006 ident: ref-178 article-title: Regulation of the ring finger E3 ligase Siah2 by p38 MAPK. publication-title: J Biol Chem. doi: 10.1074/jbc.M606568200 – volume: 96 start-page: 1844-52 year: 2000 ident: ref-107 article-title: Importance of the MKK6/p38 pathway for interleukin-12-induced STAT4 serine phosphorylation and transcriptional activity. publication-title: Blood. doi: 10.1182/blood.V96.5.1844 – volume: 379 start-page: 133-139 year: 2004 ident: ref-172 article-title: Identification of glycogen synthase as a new substrate for stress-activated protein kinase 2b/p38beta. publication-title: Biochem J. doi: 10.1042/BJ20031559 – volume: 32 start-page: 2880-2893 year: 2012 ident: ref-150 article-title: Mitogen-activated protein kinase phosphorylation of splicing factor 45 (SPF45) regulates SPF45 alternative splicing site utilization, proliferation, and cell adhesion. publication-title: Mol Cell Biol. doi: 10.1128/MCB.06327-11 – volume: 13 start-page: 263-272 year: 2011 ident: ref-22 article-title: Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. publication-title: Nat Cell Biol. doi: 10.1038/ncb2168 – volume: 14 start-page: 47-62 year: 2013 ident: ref-225 article-title: p38MAPK stress signalling in replicative senescence in fibroblasts from progeroid and genomic instability syndromes. publication-title: Biogerontology. doi: 10.1007/s10522-012-9407-2 – volume: 19 start-page: 1569-1583 year: 2005 ident: ref-89 article-title: p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. publication-title: Mol Endocrinol. doi: 10.1210/me.2004-0528 – volume: 66 start-page: 698-710.e5 year: 2017 ident: ref-180 article-title: MK2 Phosphorylates RIPK1 to Prevent TNF-Induced Cell Death. publication-title: Mol Cell. doi: 10.1016/j.molcel.2017.05.003 – volume: 32 start-page: 364-371 year: 2007 ident: ref-231 article-title: The pathways to tumor suppression via route p38. publication-title: Trends Biochem Sci. doi: 10.1016/j.tibs.2007.06.007 – volume: 273 start-page: 32111-32120 year: 1998 ident: ref-83 article-title: Specific inhibitors of p38 mitogen-activated protein kinase block 3T3-L1 adipogenesis. publication-title: J Biol Chem. doi: 10.1074/jbc.273.48.32111 – volume: 16 start-page: 689-697 year: 2015 ident: ref-183 article-title: The diverse role of RIP kinases in necroptosis and inflammation. publication-title: Nat Immunol. doi: 10.1038/ni.3206 – volume: 7 start-page: e26947 year: 2018 ident: ref-214 article-title: Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length. publication-title: eLife. doi: 10.7554/eLife.26947 – volume: 338 start-page: 31-36 year: 1994 ident: ref-53 article-title: The interleukin-1-stimulated protein kinase that phosphorylates heat shock protein hsp27 is activated by MAP kinase. publication-title: FEBS Lett. doi: 10.1016/0014-5793(94)80111-8 – volume: 96 start-page: 13956-61 year: 1999 ident: ref-106 article-title: Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-gamma uses a different signaling pathway. publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.96.24.13956 – volume: 12 start-page: 751-757 year: 2000 ident: ref-216 article-title: Myogenic differentiation requires signalling through both phosphatidylinositol 3-kinase and p38 MAP kinase. publication-title: Cell Signal. doi: 10.1016/s0898-6568(00)00120-0 – volume: 25 start-page: 2733-2743 year: 2005 ident: ref-153 article-title: Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. publication-title: Mol Cell Biol. doi: 10.1128/MCB.25.7.2733-2743.2005 – volume: 272 start-page: 20490-20494 year: 1997 ident: ref-237 article-title: Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. publication-title: J Biol Chem. doi: 10.1074/jbc.272.33.20490 – volume: 276 start-page: 26629-26639 year: 2001 ident: ref-45 article-title: A Novel MAPK phosphatase MKP-7 acts preferentially on JNK/SAPK and p38 alpha and beta MAPKs. publication-title: J Biol Chem. doi: 10.1074/jbc.M101981200 – volume: 7 start-page: 10477 year: 2016 ident: ref-114 article-title: p38gamma and delta promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation. publication-title: Nat Commun. doi: 10.1038/ncomms10477 – volume: 50 start-page: 699-710 year: 2013 ident: ref-115 article-title: A posttranslational modification cascade involving p38, Tip60, and PRAK mediates oncogene-induced senescence. publication-title: Mol Cell. doi: 10.1016/j.molcel.2013.04.013 – volume: 123 start-page: 164-178 year: 2013 ident: ref-203 article-title: Eukaryotic Elongation Factor 2 Controls TNF-α Translation in LPS-induced Hepatitis. publication-title: J Clin Invest. doi: 10.1172/JCI65124 – volume: 30 start-page: 1536-1548 year: 2011 ident: ref-232 article-title: p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. publication-title: EMBO J. doi: 10.1038/emboj.2011.69 – volume: 41 start-page: 298-310 year: 2011 ident: ref-144 article-title: p38 MAPK controls prothrombin expression by regulated RNA 3' end processing. publication-title: Mol Cell. doi: 10.1016/j.molcel.2010.12.032 – volume: 203 start-page: 2291-2300 year: 2019 ident: ref-190 article-title: The Role of TTP Phosphorylation in the Regulation of Inflammatory Cytokine Production by MK2/3. publication-title: J Immunol. doi: 10.4049/jimmunol.1801221 – volume: 25 start-page: 739-751 year: 2006 ident: ref-132 article-title: P38MAPK-dependent phosphorylation and degradation of SRC-3/AIB1 and RARalpha-mediated transcription. publication-title: EMBO J. doi: 10.1038/sj.emboj.7600981 – volume: 57 start-page: 721-734 year: 2015 ident: ref-143 article-title: Stress induces p38 MAPK-mediated phosphorylation and inhibition of Drosha-dependent cell survival. publication-title: Mol Cell. doi: 10.1016/j.molcel.2015.01.004 – volume: 11 start-page: 339-346 year: 2015 ident: ref-100 article-title: Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation. publication-title: Nat Chem Biol. doi: 10.1038/nchembio.1788 – volume: 289 start-page: 11443-11453 year: 2014 ident: ref-212 article-title: p38δ regulates p53 to control p21Cip1 expression in human epidermal keratinocytes. publication-title: J Biol Chem. doi: 10.1074/jbc.M113.543165 – volume: 58 start-page: 152864 year: 2019 ident: ref-253 article-title: The in vitro and in vivo anti-inflammatory effect of osthole, the major natural coumarin from Cnidium monnieri (L.) Cuss, via the blocking of the activation of the NF-kappaB and MAPK/p38 pathways. publication-title: Phytomedicine. doi: 10.1016/j.phymed.2019.152864 – volume: 9 start-page: 2776-2787 year: 2009 ident: ref-124 article-title: RNF2 is the target for phosphorylation by the p38 MAPK and ERK signaling pathways. publication-title: Proteomics. doi: 10.1002/pmic.200800847 – volume: 17 start-page: 142-149 year: 2009 ident: ref-122 article-title: p38MAPK controls expression of multiple cell cycle inhibitors and islet proliferation with advancing age. publication-title: Dev Cell. doi: 10.1016/j.devcel.2009.05.009 – volume: 71 start-page: 163-174 year: 2019 ident: ref-199 article-title: Macrophage p38α promotes nutritional steatohepatitis through M1 polarization. publication-title: J Hepatol. doi: 10.1016/j.jhep.2019.03.014 – volume: 281 start-page: 24390-24397 year: 2006 ident: ref-82 article-title: CCAAT/enhancer-binding protein alpha mediates induction of hepatic phosphoenolpyruvate carboxykinase by p38 mitogen-activated protein kinase. publication-title: J Biol Chem. doi: 10.1074/jbc.M603038200 – volume: 13 start-page: 40 year: 2018 ident: ref-249 article-title: A new hypothesis for Parkinson's disease pathogenesis: GTPase-p38 MAPK signaling and autophagy as convergence points of etiology and genomics. publication-title: Mol Neurodegener. doi: 10.1186/s13024-018-0273-5 – volume: 273 start-page: 29661-29671 year: 1998 ident: ref-77 article-title: RSK-B, a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38alpha mitogen-activated protein kinase (p38alphaMAPK). publication-title: J Biol Chem. doi: 10.1074/jbc.273.45.29661 – volume: 9 start-page: 596 year: 2018 ident: ref-247 article-title: Inhibiting p38 MAPK alpha rescues axonal retrograde transport defects in a mouse model of ALS. publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0624-8 – volume: 17 start-page: 4426-4441 year: 1998 ident: ref-56 article-title: Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. publication-title: EMBO J. doi: 10.1093/emboj/17.15.4426 – volume: 369 start-page: 242-245 year: 1994 ident: ref-50 article-title: A two-component system that regulates an osmosensing MAP kinase cascade in yeast. publication-title: Nature. doi: 10.1038/369242a0 – volume: 39 start-page: e00554-18 year: 2019 ident: ref-125 article-title: Inactivation of Cyclic AMP Response Element Transcription Caused by Constitutive p38 Activation Is Mediated by Hyperphosphorylation-Dependent CRTC2 Nucleocytoplasmic Transport. publication-title: Mol Cell Biol. doi: 10.1128/MCB.00554-18 – volume: 22 start-page: 3892-3904 year: 2002 ident: ref-98 article-title: Phosphorylation of NFATc4 by p38 mitogen-activated protein kinases. publication-title: Mol Cell Biol. doi: 10.1128/mcb.22.11.3892-3904.2002 – volume: 169 start-page: 622-630.e6 year: 2015 ident: ref-257 article-title: Rationale and design of the LosmApimod To Inhibit p38 MAP kinase as a TherapeUtic target and moDify outcomes after an acute coronary syndromE trial. publication-title: Am Heart J. doi: 10.1016/j.ahj.2015.02.012 – volume: 19 start-page: 996-1002 year: 2017 ident: ref-76 article-title: Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. publication-title: Nat Cell Biol. doi: 10.1038/ncb3581 – volume: 37 start-page: 551-566 year: 2010 ident: ref-162 article-title: Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. publication-title: Mol Cell. doi: 10.1016/j.molcel.2010.01.034 – volume: 5 start-page: 99-118 year: 2010 ident: ref-235 article-title: The senescence-associated secretory phenotype: the dark side of tumor suppression. publication-title: Annu Rev Pathol. doi: 10.1146/annurev-pathol-121808-102144 – volume: 31 start-page: 2952-64 year: 2012 ident: ref-137 article-title: The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. publication-title: EMBO J. doi: 10.1038/emboj.2012.122 – volume: 113 start-page: 2229-2237 year: 2009 ident: ref-38 article-title: Genetic disruption of p38alpha Tyr323 phosphorylation prevents T-cell receptor-mediated p38alpha activation and impairs interferon-gamma production. publication-title: Blood. doi: 10.1182/blood-2008-04-153304 – volume: 121 start-page: 3598-3607 year: 2008 ident: ref-60 article-title: p38 mitogen-activated protein kinase regulates canonical Wnt-beta-catenin signaling by inactivation of GSK3beta. publication-title: J Cell Sci. doi: 10.1242/jcs.032854 – volume: 32 start-page: 2722-2737 year: 2012 ident: ref-85 article-title: Nerve growth factor-induced cell cycle reentry in newborn neurons is triggered by p38MAPK-dependent E2F4 phosphorylation. publication-title: Mol Cell Biol. doi: 10.1128/MCB.00239-12 – volume: 75 start-page: 487-493 year: 1993 ident: ref-42 article-title: MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. publication-title: Cell. doi: 10.1016/0092-8674(93)90383-2 – volume: 51 start-page: 576-85 year: 2012 ident: ref-138 article-title: 2-Methoxyestradiol induced Bax phosphorylation and apoptosis in human retinoblastoma cells via p38 MAPK activation. publication-title: Mol Carcinog. doi: 10.1002/mc.20825 – volume: 161 start-page: 3225-36 year: 1998 ident: ref-196 article-title: p38 MAPK is required for CD40-induced gene expression and proliferation in B lymphocytes. publication-title: J Immunol. doi: 10.4049/jimmunol.161.7.3225 – volume: 275 start-page: 13872-13878 year: 2000 ident: ref-72 article-title: A role for the p38 MAP kinase pathway in the nuclear shuttling of NFATp. publication-title: J Biol Chem. doi: 10.1074/jbc.275.18.13872 – volume: 25 start-page: 7381-7390 year: 2006 ident: ref-157 article-title: Cisplatin induces PKB/Akt activation and p38MAPK phosphorylation of the EGF receptor. publication-title: Oncogene. doi: 10.1038/sj.onc.1209737 – volume: 189 start-page: 4657-4665 year: 2012 ident: ref-174 article-title: The TLR7/8 agonist CL097 primes N-formyl-methionyl-leucyl-phenylalanine-stimulated NADPH oxidase activation in human neutrophils: critical role of p47phox phosphorylation and the proline isomerase Pin1. publication-title: J Immunol. doi: 10.4049/jimmunol.1201007 – volume: 2 start-page: 473-478 year: 2003 ident: ref-133 article-title: Regulation of human Cdc25A stability by Serine 75 phosphorylation is not sufficient to activate a S phase checkpoint. publication-title: Cell Cycle. doi: 10.4161/cc.2.5.482 – volume: 23 start-page: 7537-7544 year: 2004 ident: ref-136 article-title: P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation. publication-title: Oncogene. doi: 10.1038/sj.onc.1208040 – volume: 6 start-page: 109-116 year: 2000 ident: ref-120 article-title: Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. publication-title: Mol Cell. doi: 10.1016/S1097-2765(05)00014-6 – volume: 280 start-page: 3323-3330 year: 2005 ident: ref-78 article-title: Activation of p21-activated kinase 6 by MAP kinase kinase 6 and p38 MAP kinase. publication-title: J Biol Chem. doi: 10.1074/jbc.M406701200 – volume: 62 start-page: 1319-1327 year: 2015 ident: ref-221 article-title: Hepatic p38α regulates gluconeogenesis by suppressing AMPK. publication-title: J Hepatol. doi: 10.1016/j.jhep.2014.12.032 – volume: 24 start-page: 3235-3246 year: 2005 ident: ref-151 article-title: Phosphorylation of EEA1 by p38 MAP kinase regulates mu opioid receptor endocytosis. publication-title: EMBO J. doi: 10.1038/sj.emboj.7600799 – volume: 18 Suppl 3 start-page: 20-29 year: 2013 ident: ref-201 article-title: Activation of p38 mitogen-activated protein kinase in ovalbumin and ozone-induced mouse model of asthma. publication-title: Respirology. doi: 10.1111/resp.12189 – volume: 21 start-page: 7545-7557 year: 2001 ident: ref-160 article-title: Trophic factor withdrawal: p38 mitogen-activated protein kinase activates NHE1, which induces intracellular alkalinization. publication-title: Mol Cell Biol. doi: 10.1128/MCB.21.22.7545-7557.2001 – volume: 180 start-page: 5075-5082 year: 2008 ident: ref-186 article-title: Macrophage deletion of p38alpha partially impairs lipopolysaccharide-induced cellular activation. publication-title: J Immunol. doi: 10.4049/jimmunol.180.7.5075 – volume: 14 start-page: 1970-1978 year: 1995 ident: ref-32 article-title: A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. publication-title: EMBO J. doi: 10.1002/j.1460-2075.1995.tb07189.x – volume: 280 start-page: 599-602 year: 1998 ident: ref-206 article-title: Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. publication-title: Science. doi: 10.1126/science.280.5363.599 – volume: 16 start-page: e2004225 year: 2018 ident: ref-220 article-title: Metabolic benefits of inhibition of p38α in white adipose tissue in obesity. publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2004225 – volume: 93 start-page: 254-261 year: 2003 ident: ref-36 article-title: Diverse mechanisms of myocardial p38 mitogen-activated protein kinase activation: evidence for MKK-independent activation by a TAB1-associated mechanism contributing to injury during myocardial ischemia. publication-title: Circ Res. doi: 10.1161/01.RES.0000083490.43943.85 – volume: 19 start-page: 1248-1259 year: 2017 ident: ref-182 article-title: p38 MAPK/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. publication-title: Nat Cell Biol. doi: 10.1038/ncb3614 – volume: 108 start-page: 12764-12769 year: 2011 ident: ref-185 article-title: Genetic analysis of specific and redundant roles for p38alpha and p38beta MAPKs during mouse development. publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1015013108 – volume: 17 start-page: 2360-2371 year: 1997 ident: ref-66 article-title: Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex factors. publication-title: Mol Cell Biol. doi: 10.1128/mcb.17.5.2360 – volume: 368 start-page: 939-945 year: 2002 ident: ref-91 article-title: Differential targeting of the stress mitogen-activated protein kinases to the c-Jun dimerization protein 2. publication-title: Biochem J. doi: 10.1042/BJ20021127 – volume: 274 start-page: 15115-15126 year: 1999 ident: ref-102 article-title: Phosphorylation of the transactivation domain of Pax6 by extracellular signal-regulated kinase and p38 mitogen-activated protein kinase. publication-title: J Biol Chem. doi: 10.1074/jbc.274.21.15115 – volume: 14 start-page: 1150-1156 year: 2007 ident: ref-73 article-title: p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation. publication-title: Nat Struct Mol Biol. doi: 10.1038/nsmb1316 – volume: 7 start-page: 421-432 year: 2001 ident: ref-152 article-title: The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex. publication-title: Mol Cell. doi: 10.1016/s1097-2765(01)00189-7 – volume: 64 start-page: 25-36 year: 2016 ident: ref-209 article-title: The N-Terminal Phosphorylation of RB by p38 Bypasses Its Inactivation by CDKs and Prevents Proliferation in Cancer Cells. publication-title: Mol Cell. doi: 10.1016/j.molcel.2016.08.015 – volume: 271 start-page: 17920-17926 year: 1996 ident: ref-6 article-title: Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). publication-title: J Biol Chem. doi: 10.1074/jbc.271.30.17920 – volume: 29 start-page: 301 year: 2011 ident: ref-259 article-title: p38 kinase inhibitor approved for idiopathic pulmonary fibrosis. publication-title: Nat Biotechnol. doi: 10.1038/nbt0411-301 – volume: 39 start-page: 2278-2288 year: 2007 ident: ref-92 article-title: The mitogen-activated protein kinase p38 regulates activator protein 1 by direct phosphorylation of c-Jun. publication-title: Int J Biochem Cell Biol. doi: 10.1016/j.biocel.2007.06.013 – volume: 191 start-page: 859-870 year: 2000 ident: ref-118 article-title: Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. publication-title: J Exp Med. doi: 10.1084/jem.191.5.859 – volume: 9 start-page: 2853-2863 year: 2010 ident: ref-171 article-title: Comprehensive analysis of phosphorylation sites in Tensin1 reveals regulation by p38MAPK. publication-title: Mol Cell Proteomics. doi: 10.1074/mcp.M110.003665 – volume: 15 start-page: 965-972 year: 2014 ident: ref-222 article-title: The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. publication-title: Nat Immunol. doi: 10.1038/ni.2981 – volume: 31 start-page: 301-16 year: 2012 ident: ref-110 article-title: Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. publication-title: EMBO J. doi: 10.1038/emboj.2011.391 – volume: 265 start-page: 808-811 year: 1994 ident: ref-2 article-title: A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. publication-title: Science. doi: 10.1126/science.7914033 – volume: 16 start-page: 4973-4982 year: 1997 ident: ref-30 article-title: A human homolog of the yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1, mediates stress-induced activation of the p38 and JNK pathways. publication-title: EMBO J. doi: 10.1093/emboj/16.16.4973 – volume: 164 start-page: 593-602 year: 2004 ident: ref-166 article-title: Phosphorylation of paxillin by p38MAPK is involved in the neurite extension of PC-12 cells. publication-title: J Cell Biol. doi: 10.1083/jcb.200307081 – volume: 30 start-page: 499-500 year: 2016 ident: ref-179 article-title: Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics. publication-title: Cancer Cell. doi: 10.1016/j.ccell.2016.08.009 – volume: 38 start-page: e00409-17 year: 2018 ident: ref-34 article-title: TAB1-Induced Autoactivation of p38alpha Mitogen-Activated Protein Kinase Is Crucially Dependent on Threonine 185. publication-title: Mol Cell Biol. doi: 10.1128/MCB.00409-17 – volume: 9 start-page: 603-12 year: 2008 ident: ref-198 article-title: Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. publication-title: Nat Immunol. doi: 10.1038/ni.1609 – volume: 16 start-page: 1909-1920 year: 1997 ident: ref-57 article-title: Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. publication-title: EMBO J. doi: 10.1093/emboj/16.8.1909 – volume: 20 start-page: 891-903 year: 2005 ident: ref-148 article-title: p38-dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. publication-title: Mol Cell. doi: 10.1016/j.molcel.2005.10.021 – volume: 268 start-page: 25009-25014 year: 1993 ident: ref-1 article-title: Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. publication-title: J Biol Chem. – volume: 28 start-page: 4129-4141 year: 2008 ident: ref-158 article-title: Phosphorylation of fibroblast growth factor (FGF) receptor 1 at Ser777 by p38 mitogen-activated protein kinase regulates translocation of exogenous FGF1 to the cytosol and nucleus. publication-title: Mol Cell Biol. doi: 10.1128/MCB.02117-07 – volume: 2 start-page: 5 year: 2012 ident: ref-149 article-title: A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts. publication-title: Skelet Muscle. doi: 10.1186/2044-5040-2-5 – volume: 8 start-page: 1259 year: 2017 ident: ref-44 article-title: Dual-Specificity Phosphatase 12 Targets p38 MAP Kinase to Regulate Macrophage Response to Intracellular Bacterial Infection. publication-title: Front Immunol. doi: 10.3389/fimmu.2017.01259 – volume: 20 start-page: 4543-4552 year: 2000 ident: ref-208 article-title: Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. publication-title: Mol Cell Biol. doi: 10.1128/mcb.20.13.4543-4552.2000 – volume: 271 start-page: 13675-13679 year: 1996 ident: ref-27 article-title: A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. publication-title: J Biol Chem. doi: 10.1074/jbc.271.23.13675 – volume: 15 start-page: 4629-4642 year: 1996 ident: ref-63 article-title: FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. publication-title: EMBO J. – volume: 286 start-page: 31501-31511 year: 2011 ident: ref-113 article-title: Phosphorylation of Raptor by p38beta participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation. publication-title: J Biol Chem. doi: 10.1074/jbc.M111.233122 – volume: 272 start-page: 1347-1349 year: 1996 ident: ref-68 article-title: Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. publication-title: Science. doi: 10.1126/science.272.5266.1347 – volume: 272 start-page: 20936-20944 year: 1997 ident: ref-90 article-title: The p38/reactivating kinase mitogen-activated protein kinase cascade mediates the activation of the transcription factor insulin upstream factor 1 and insulin gene transcription by high glucose in pancreatic beta-cells. publication-title: J Biol Chem. doi: 10.1074/jbc.272.33.20936 – volume: 79 start-page: 4135-4148 year: 2019 ident: ref-105 article-title: p38 Stabilizes Snail by Suppressing DYRK2-Mediated Phosphorylation That Is Required for GSK3beta-betaTrCP-Induced Snail Degradation. publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-19-0049 – volume: 9 start-page: 2801 year: 2018 ident: ref-111 article-title: p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. publication-title: Nat Commun. doi: 10.1038/s41467-018-05078-8 – volume: 285 start-page: 26149-26161 year: 2010 ident: ref-159 article-title: Two Nedd4-binding motifs underlie modulation of sodium channel Nav1.6 by p38 MAPK. publication-title: J Biol Chem. doi: 10.1074/jbc.M109.098681 – volume: 71 start-page: 3980-90 year: 2011 ident: ref-108 article-title: Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2914 – volume: 279 start-page: 30966-30972 year: 2004 ident: ref-126 article-title: MEKK1 signaling through p38 leads to transcriptional inactivation of E47 and repression of skeletal myogenesis. publication-title: J Biol Chem. doi: 10.1074/jbc.M402224200 – volume: 273 start-page: 4449-4458 year: 1998 ident: ref-161 article-title: Identification of the phosphorylation sites of cytosolic phospholipase A2 in agonist-stimulated human platelets and HeLa cells. publication-title: J Biol Chem. doi: 10.1074/jbc.273.8.4449 – volume: 277 start-page: 9896-9903 year: 2002 ident: ref-64 article-title: Specificity determinants in MAPK signaling to transcription factors. publication-title: J Biol Chem. doi: 10.1074/jbc.M108145200 – volume: 235 start-page: 533-538 year: 1997 ident: ref-10 article-title: Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. publication-title: Biochem Biophys Res Commun. doi: 10.1006/bbrc.1997.6849 – volume: 17 start-page: 3372-3384 year: 1998 ident: ref-55 article-title: PRAK, a novel protein kinase regulated by the p38 MAP kinase. publication-title: EMBO J. doi: 10.1093/emboj/17.12.3372 – volume: 26 start-page: 2115-26 year: 2007 ident: ref-129 article-title: A new p38 MAP kinase-regulated transcriptional coactivator that stimulates p53-dependent apoptosis. publication-title: EMBO J. doi: 10.1038/sj.emboj.7601657 – volume: 35 start-page: 536-552 year: 2016 ident: ref-202 article-title: p38γ and p38δ Reprogram Liver Metabolism by Modulating Neutrophil Infiltration. publication-title: EMBO J. doi: 10.15252/embj.201591857 – volume: 272 start-page: 3296-3301 year: 1997 ident: ref-17 article-title: Hemopoietic growth factors with the exception of interleukin-4 activate the p38 mitogen-activated protein kinase pathway. publication-title: J Biol Chem. doi: 10.1074/jbc.272.6.3296 – volume: 136 start-page: 235-248 year: 2009 ident: ref-61 article-title: Regulation of PKD by the MAPK p38delta in insulin secretion and glucose homeostasis. publication-title: Cell. doi: 10.1016/j.cell.2008.11.018 – volume: 16 start-page: e2004111 year: 2018 ident: ref-40 article-title: Unique properties of TCR-activated p38 are necessary for NFAT-dependent T-cell activation. publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2004111 – volume: 24 start-page: 1134-1145 year: 2005 ident: ref-168 article-title: p38gamma regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. publication-title: EMBO J. doi: 10.1038/sj.emboj.7600578 – volume: 73 start-page: 2125-2136 year: 2016 ident: ref-184 article-title: Developmental checkpoints guarded by regulated necrosis. publication-title: Cell Mol Life Sci. doi: 10.1007/s00018-016-2188-z – volume: 551 start-page: 427-431 year: 2017 ident: ref-243 article-title: The most popular genes in the human genome. publication-title: Nature. doi: 10.1038/d41586-017-07291-9 – volume: 270 start-page: 1326-1331 year: 1995 ident: ref-236 article-title: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. publication-title: Science. doi: 10.1126/science.270.5240.1326 – volume: 372 start-page: 739-746 year: 1994 ident: ref-5 article-title: A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. publication-title: Nature. doi: 10.1038/372739a0 – volume: 6 start-page: 1028-1031 year: 1996 ident: ref-65 article-title: p38/RK is essential for stress-induced nuclear responses: JNK/SAPKs and c-Jun/ATF-2 phosphorylation are insufficient. publication-title: Curr Biol. doi: 10.1016/s0960-9822(02)00649-8 – volume: 582 start-page: 2703-8 year: 2008 ident: ref-145 article-title: Serum starvation induces H2AX phosphorylation to regulate apoptosis via p38 MAPK pathway. publication-title: FEBS Lett. doi: 10.1016/j.febslet.2008.06.051 – volume: 145 start-page: 1049-1061 year: 2011 ident: ref-112 article-title: Inheritance of stress-induced, ATF-2-dependent epigenetic change. publication-title: Cell. doi: 10.1016/j.cell.2011.05.029 – volume: 156 start-page: 283-290 year: 2014 ident: ref-229 article-title: Molecular mechanisms for the p38-induced cellular senescence in normal human fibroblast. publication-title: J Biochem. doi: 10.1093/jb/mvu040 – volume: 228 start-page: 334-340 year: 1996 ident: ref-8 article-title: The primary structure of p38 gamma: a new member of p38 group of MAP kinases. publication-title: Biochem Biophys Res Commun. doi: 10.1006/bbrc.1996.1662 – volume: 270 start-page: 27995-27998 year: 1995 ident: ref-31 article-title: Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. publication-title: J Biol Chem. doi: 10.1074/jbc.270.47.27995 – volume: 267 start-page: 682-685 year: 1995 ident: ref-24 article-title: Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. publication-title: Science. doi: 10.1126/science.7839144 – volume: 240 start-page: 490-496 year: 2015 ident: ref-258 article-title: The effect of BMS-582949, a P38 mitogen-activated protein kinase (P38 MAPK) inhibitor on arterial inflammation: a multicenter FDG-PET trial. publication-title: Atherosclerosis. doi: 10.1016/j.atherosclerosis.2015.03.039 – volume: 23 start-page: 365-375 year: 2004 ident: ref-96 article-title: Phosphorylation of MRF4 transactivation domain by p38 mediates repression of specific myogenic genes. publication-title: EMBO J. doi: 10.1038/sj.emboj.7600056 – volume: 275 start-page: 20980-4 year: 2000 ident: ref-146 article-title: ERKs and p38 kinases mediate ultraviolet B-induced phosphorylation of histone H3 at serine 10. publication-title: J Biol Chem. doi: 10.1074/jbc.M909934199 – volume: 8 start-page: 971-82 year: 2001 ident: ref-130 article-title: Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. publication-title: Mol Cell. doi: 10.1016/s1097-2765(01)00390-2 – volume: 34 start-page: 220-232 year: 2014 ident: ref-187 article-title: The role of mammalian MAPK signaling in regulation of cytokine mRNA stability and translation. publication-title: J Interferon Cytokine Res. doi: 10.1089/jir.2013.0146 – volume: 16 start-page: 1921-1933 year: 1997 ident: ref-58 article-title: MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. publication-title: EMBO J. doi: 10.1093/emboj/16.8.1921 – volume: 281 start-page: 25215-22 year: 2006 ident: ref-139 article-title: p38 MAP kinase mediates apoptosis through phosphorylation of BimEL at Ser-65. publication-title: J Biol Chem. doi: 10.1074/jbc.M512627200 – volume: 271 start-page: 8488-8492 year: 1996 ident: ref-54 article-title: Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. publication-title: J Biol Chem. doi: 10.1074/jbc.271.14.8488 – volume: 31 start-page: 4405-16 year: 2011 ident: ref-142 article-title: Stress-stimulated mitogen-activated protein kinases control the stability and activity of the Cdt1 DNA replication licensing factor. publication-title: Mol Cell Biol. doi: 10.1128/MCB.06163-11 – volume: 568 start-page: 557-560 year: 2019 ident: ref-14 article-title: p38γ Is Essential for Cell Cycle Progression and Liver Tumorigenesis. publication-title: Nature. doi: 10.1038/s41586-019-1112-8 – volume: 274 start-page: 12229-12235 year: 1999 ident: ref-70 article-title: p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. publication-title: J Biol Chem. doi: 10.1074/jbc.274.18.12229 – volume: 279 start-page: 45969-45979 year: 2004 ident: ref-97 article-title: Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. publication-title: J Biol Chem. doi: 10.1074/jbc.M408795200 – volume: 124 start-page: 3006-3016 year: 2011 ident: ref-99 article-title: p38 MAPKs regulate the expression of genes in the dopamine synthesis pathway through phosphorylation of NR4A nuclear receptors. publication-title: J Cell Sci. doi: 10.1242/jcs.085902 – volume: 99 start-page: 12859-12864 year: 2002 ident: ref-74 article-title: p38 MAPK enhances STAT1-dependent transcription independently of Ser-727 phosphorylation. publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.192264999 – volume: 78 start-page: 1039-1049 year: 1994 ident: ref-4 article-title: Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. publication-title: Cell. doi: 10.1016/0092-8674(94)90278-x – volume: 249 start-page: 791-796 year: 1998 ident: ref-167 article-title: Identification of stathmin as a novel substrate for p38 delta. publication-title: Biochem Biophys Res Commun. doi: 10.1006/bbrc.1998.9250 – volume: 30 start-page: 2623-2636 year: 2016 ident: ref-123 article-title: p38MAPK builds a hyaluronan cancer niche to drive lung tumorigenesis. publication-title: Genes Dev. doi: 10.1101/gad.290346.116 – volume: 105 start-page: 3841-3847 year: 2005 ident: ref-84 article-title: CCAAT/enhancer binding protein epsilon: changes in function upon phosphorylation by p38 MAP kinase. publication-title: Blood. doi: 10.1182/blood-2004-09-3708 – volume: 36 start-page: 738-43 year: 2004 ident: ref-109 article-title: p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. publication-title: Nat Genet. doi: 10.1038/ng1378 – volume: 22 start-page: 5835-5845 year: 2002 ident: ref-86 article-title: Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation. publication-title: Mol Cell Biol. doi: 10.1128/mcb.22.16.5835-5845.2002 – volume: 16 start-page: 295-305 year: 1997 ident: ref-81 article-title: Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38). publication-title: EMBO J. doi: 10.1093/emboj/16.2.295 – volume: 409 start-page: 711-722 year: 2008 ident: ref-155 article-title: Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex. publication-title: Biochem J. doi: 10.1042/BJ20071149 – volume: 69 start-page: 191-198 year: 1997 ident: ref-169 article-title: Reactivating kinase/p38 phosphorylates tau protein in vitro. publication-title: J Neurochem. doi: 10.1046/j.1471-4159.1997.69010191.x – volume: 270 start-page: 7420-7426 year: 1995 ident: ref-11 article-title: Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. publication-title: J Biol Chem. doi: 10.1074/jbc.270.13.7420 – volume: 295 start-page: 1291-1294 year: 2002 ident: ref-33 article-title: MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. publication-title: Science. doi: 10.1126/science.1067289 – volume: 115 start-page: 2174-2179 year: 2018 ident: ref-41 article-title: Intensity and duration of TCR signaling is limited by p38 phosphorylation of ZAP-70T293 and destabilization of the signalosome. publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1713301115 – volume: 9 start-page: 700 year: 2018 ident: ref-173 article-title: Phosphorylation of Parkin at serine 131 by p38 MAPK promotes mitochondrial dysfunction and neuronal death in mutant A53T α-synuclein model of Parkinson's disease. publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0722-7 – volume: 118 start-page: 3280-3289 year: 2011 ident: ref-39 article-title: Lack of the T cell-specific alternative p38 activation pathway reduces autoimmunity and inflammation. publication-title: Blood. doi: 10.1182/blood-2011-01-333039 – volume: 30 start-page: 588-99 year: 2011 ident: ref-131 article-title: p38 phosphorylates Rb on Ser567 by a novel, cell cycle-independent mechanism that triggers Rb-Hdm2 interaction and apoptosis. publication-title: Oncogene. doi: 10.1038/onc.2010.442 – volume: 20 start-page: 5022-5031 year: 2001 ident: ref-71 article-title: The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced Tyrosinase expression. publication-title: EMBO J. doi: 10.1093/emboj/20.17.5022 – volume: 276 start-page: 44495-44501 year: 2001 ident: ref-103 article-title: p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor alpha: a potential role in the cardiac metabolic stress response. publication-title: J Biol Chem. doi: 10.1074/jbc.M105945200 – volume: 5 start-page: 1649-1653 year: 2006 ident: ref-134 article-title: CDC25B phosphorylation by p38 and MK-2. publication-title: Cell Cycle. doi: 10.4161/cc.5.15.3006 – volume: 90 start-page: 315-323 year: 1997 ident: ref-240 article-title: The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. publication-title: Cell. doi: 10.1016/s0092-8674(00)80339-6 – volume: 24 start-page: 907-913 year: 2012 ident: ref-46 article-title: MKP-1: a negative feedback effector that represses MAPK-mediated pro-inflammatory signaling pathways and cytokine secretion in human airway smooth muscle cells. publication-title: Cell Signal. doi: 10.1016/j.cellsig.2011.12.013 – volume: 10 start-page: 891-901 year: 2008 ident: ref-80 article-title: The regulated assembly of a PKCepsilon complex controls the completion of cytokinesis. publication-title: Nat Cell Biol. doi: 10.1038/ncb1749 – volume: 17 start-page: 4744-4752 year: 1998 ident: ref-49 article-title: Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. publication-title: EMBO J. doi: 10.1093/emboj/17.16.4744 – volume: 22 start-page: 4841-4850 year: 2003 ident: ref-104 article-title: p38 MAP kinase modulates Smad-dependent changes in human prostate cell adhesion. publication-title: Oncogene. doi: 10.1038/sj.onc.1206730 |
SSID | ssj0000993627 |
Score | 2.4340775 |
SecondaryResourceType | review_article |
Snippet | The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular... |
SourceID | doaj pubmedcentral proquest crossref faculty1000 |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 653 |
SubjectTerms | Cellular stress response Cloning Cyclin-dependent kinases Kinases Lymphocytes Mammals Phosphatase Phosphorylation Proteins Review T cell receptors Transcription factors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4geKiggFgoaJCQupG0cJ17DqSCqCqmcqFQJIctPdYFNVtl2pf6Y_ldm7HS1Oe2Fa-w8nJmMv5nMfMPYO0U4vJahEJFKcsoqoh2sY1FLY2UkyqqKqpHPvzdnF-LbZX250eqLcsIyPXB-cUelkNyUgWjBnfBEj2VL65Q4DlYe1z6xl-Ket-FM_c64By0z1UpzdACLMqXxpPJg3qDLFymqPbDpXB1yvAA_LEc7UyLw32W70RADxi3NH2HQcQblxpZ0-pjtDVgSTvIanrAHod1nD8-Hv-X7bC-1p3y_hCFZ8Cm7O2mBcjbpfwB0EeZmPk-BDlhUU5jj1436VFCtwwoxqIfE4jBr4c-sxd1u-QGGJ4E-t7Dv-iVdhqL_kKtOwLQeRylZpuuBskMMFbzDz1UOzEH5CRYh9JBrZj4Ch0Rrvgr-1zN2cfr1x5ezYmjQULi6lGXhjWgi-iQIC531ykRuojTCKBIPF1OLzlAjEXI4L6V0iEaCt42TyiohvDXVc7bTdm14waCRrvYKzYtyViiPMwKaHuu5qKeIQcOE1ffC0W5gL6cmGn81eTEkVD0Sqk5C1eWEHa3PW2T-jq1nfCbZr2cT_3Y6gFqpB63U27RywqoNzdHre2y79cG9hunBlCw1QiyVePlx-O16GI0Ayda0obvJcyRR9U8nTI40c7SM8Ug7u0p04hIxtRL1y_-x7lfsEaeARIpRHbCd6_4mvEbUdm3fpA_0H8GePWI priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED7BkBB7mGCACAxkJCReyNYkdlw_oYGYJqTxxKS-Rf7JKmhS0g1t_z13jhuWF_ZaO3XdO5-_u9x9B_BOEQ4X0uc8UElOUQW0gyLkQmojA1FWVVSNfPatPj3nXxdikQJum5RWubWJ0VC7zlKM_AhvGhXpyYuP6985dY2it6uphcZ9eEDUZaTVciHHGAuiH7TPMhUGlzU6e4Hi2YlH5-KwLGeqPCwmd1Kk7t-F3aCJ--KG5k_Q5zR38tZldPIY9hKKZMeD2J_APd_uw8Oz9J58H_ZiY8r3G5bSBJ_C9XHLKFuTdsm6wFZ6tYohDrau5myF5xo1Kacqhz-IPh2L_A3Llv1ctnjPbT6w9EtYPzSv7_oNfQ3F_dlQb8J063CU0mS6nlFeiKZS92dwfvLl--fTPHVdyK0oZJE7zeuAjgZiPWuc0qHUQWquleIzX_K5QQ-nligM66SUFiGGd6a2UhnFuTO6eg47bdf6F8BqaYVTaDOUNVw5nOHRnhhXcjFHYOkzENv_vbGJkpw6Y_xqyDUheTUTeTVRXk2RwdH43Hog5bjziU8k1nE2kWrHD7r-R5POKHpBstSFJwZ6yx0xsZnCWNq2kTPhRAbVLaVoxjXuWvpgqzxNsg-b5p82Z_B2HMaTTWLTre-uhjmS-PfnGciJ0k22MR1plxeRI1wiUFZcvPz_4q_gUUnxgxhSOoCdy_7Kv0aQdWnexJP0F4bfJp8 priority: 102 providerName: ProQuest |
Title | An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling [version 1; peer review: awaiting peer review] |
URI | http://dx.doi.org/10.12688/f1000research.22092.1 https://www.proquest.com/docview/2419008221 https://www.proquest.com/docview/2419712758 https://pubmed.ncbi.nlm.nih.gov/PMC7324945 https://doaj.org/article/1472a1e4610c4d5995b1bc940eb705d5 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-1BbEPRavi1bpEEHxxz9vdZHN5EGmltQhXRDy4tyWf9rS32-610v73zmRzRxfE4ss9XLJfmUnym8nMbwh5IxGHc-FS5jElJys8rIPcp1woLTxSVhWYjTw5LU-m7MuMzzbIqlxqHMDlX007rCc1bc-HN5e3H2HCfwjcCCVYcB6d1JEc52yY5yOZD8Ei2oLdSWBVg0mE_D87RARrNmZR52AaplkI8En-favenhWo_bfJtlfIjXGL_XvotB9beWezOn5MdiLKpAedWjwhG67eJQ8n8Rx9l-yEwpVvlzSGET4lNwc1xWhOPCmgjacLtVgEFwi9KMZ0AfMeNC3FLIjfgE4tDfwO85r-mtewDy7f0fgmtO2K2zftEm-D5wK0y0ehqrbQimE0TUsxbkRhKvwzMj0--v7pJI1VGVLDM5GlVrHSgyECWNBoK5XPlReKKSnZyOVsrMECKgXgDGOFEAYgiLO6NEJqyZjVqnhONuumdi8ILYXhVsKaIo1m0kIPB-uNtjnjYwCebkD4atwrEynLsXLGeYWmC8qr6smrCvKqsgF5v77uoiPtuPeKQxTrujeSboc_mvZHFecwWEkiV5lDhnrDLDK16Uwb_GwtRtzyASnuKEW1fsZ9j95fKU-1Uv8KNFcGMn5ofr1uhpmPYlO1a667PgL5-ccDInpK1_uMfks9Pwsc4gKAtGR8779H6iV5lKPLIXih9snmVXvtXgEuu9IJeSBmIiFbh0enX78lwbsBv59nWRKm4B9EkziZ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9VFCoCBRYJBAX3MabXW_2gFB5VCltemql3My-3EYQO8Qt0D_Fb2Rm44T6Qk-9Ztfe2DOe-XZ25huAV5pwuFQhEQWV5KS9Au2gLBKpjFUFUVb1qBp5eJQNTsSXkRytwJ9FLQylVS5sYjTUvnIUI99BT6MjPXn6fvojoa5RdLq6aKExV4uDcPkLt2z1u_1PKN_XnO99Pv44SJquAomTqUoTb0RWIJBGLOOs16bgplBGGK1FN3DRt4jgM4WLOa-UcuhCg7eZU9pqIbw1PbzvLbiNjrdLmz01UsuYDqIt9AeqKUTmGW4uC4qfN7w9Z9ucdzXfTls-MLYKWIO1whDXxiXNb6Hddq7mFee3dx_WG9TKdudq9gBWQrkBd4bNufwGrMdGmG9q1qQlPoTfuyWj7FB6q6wq2MRMJjGkwqa9PpugHUHNTaiq4ieiXc8iX8S4ZN_GJfrV-i1r_gmbhVPqMFbNaroNnTOweX0LM6XHUUrLqWaM8lAMldY_gpMbkccmrJZVGR4Dy5STXqON0s4K7XFGQPtlPReyj0A2dEAu3nvuGgp06sTxPaetEMkrb8krj_LK0w7sLK-bzklArr3iA4l1OZtIvOMP1ew0b2wC7roUN2kgxnsnPDG_2dQ6emyrutLLDvSuKEW-XOO6pbcWypM39qjO_309HXi5HEZLQmIzZagu5nMU8f33O6BaStd6jPZIOT6LnOQKgbkW8sn_F38BdwfHw8P8cP_o4Cnc4xS7iOGsLVg9n12EZwjwzu3z-FUx-HrTn_FfhVJjRg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxNBEJ5gSYg8EEWNVdQ10fji0d5297b7YAwIBEQaYiTh7dxfB432rrag8q_51zlz3VbuRZ547e3d9m5mZ76dnfkG4JUmHC5VSERBJTlpr0A7KItEKmNVQZRVPapGPhpk-yfi46k8XYI_81oYSquc28TaUPvKUYy8g55G1_TkaaeIaRHHO3vvxz8S6iBFJ63zdhozFTkMV79w-zZ9d7CDsn7N-d7ulw_7SewwkDiZqjTxRmQFgmrENc56bQpuCmWE0Vp0Axd9i2g-Uzix80oph-40eJs5pa0WwlvTw-fegWVFu6IWLG_vDo4_LyI8iL3QO6hYlswz3GoWFE2PLD7nm5x3Nd9MGx6xbhywCquFIeaNKxrfwL7NzM1rrnDvHqxFDMu2Zkp3H5ZCuQ4rR_GUfh3W6raYb6YsJik-gN9bJaNcUfrGrCrYyIxGdYCFjXt9NkKrgnqcUI3FT8S-ntXsEcOSfRuW6GWnb1n8J2wSzqjfWDWZ0mPo1IHNql2YKT1epSSdasIoK8VQof1DOLkViTyCVlmV4TGwTDnpNVos7azQHkcEtGbWcyH7CGtDG-T8u-cuEqJTX47vOW2MSF55Q155La88bUNncd94Rgly4x3bJNbFaKL0rn-oJmd5tBC4B1PcpIH4753wxANnU-vota3qSi_b0LumFPlijpum3pgrTx6t0zT_t5ba8HJxGe0Kic2UobqcjVHE_t9vg2ooXeM1mlfK4XnNUK4Qpmshn_x_8hewgks4_3QwOHwKdzkFMurY1ga0LiaX4RmivQv7PC4rBl9veyX_BRb5aOE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+overview+of+mammalian+p38+mitogen-activated+protein+kinases%2C+central+regulators+of+cell+stress+and+receptor+signaling&rft.jtitle=F1000+research&rft.au=Han%2C+Jiahuai&rft.au=Wu%2C+Jianfeng&rft.au=Silke%2C+John&rft.date=2020&rft.issn=2046-1402&rft.eissn=2046-1402&rft.volume=9&rft.spage=653&rft_id=info:doi/10.12688%2Ff1000research.22092.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_12688_f1000research_22092_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-1402&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-1402&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-1402&client=summon |