PIM1 controls GBP1 activity to limit self-damage and to guard against pathogen infection
Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)–inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cel...
Saved in:
Published in | Science Vol. 382; no. 6666; p. eadg2253 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science (AAAS)
06.10.2023
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)–inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation. IFN-γ exposure improved macrophage survival through the activity of the kinase PIM1. PIM1 phosphorylated GBP1, leading to its sequestration by 14-3-3σ, which thereby prevented GBP1 membrane association. During
Toxoplasma gondii
infection, the virulence protein TgIST interfered with IFN-γ signaling and depleted PIM1, thereby increasing GBP1 activity. Although infected cells can restrain pathogens in a GBP1-dependent manner, this mechanism can protect uninfected bystander cells. Thus, PIM1 can provide a bait for pathogen virulence factors, guarding the integrity of IFN-γ signaling.
Mammalian cells use guard mechanisms to monitor their functional pathways for interference by pathogens. Infection causes the production of the inflammatory cytokine interferon-γ (IFN-γ), which triggers the expression of hundreds of IFN-stimulated-genes, including the kinase PIM1 and GBP1, a membrane-perturbing GTPase. Fisch
et al
. identified a guard mechanism whereby PIM1 phosphorylates GBP1 and subjects it to sequestration by a 14-3-3 protein. In human macrophages, this mechanism was found to prevent GBP1 activity from causing Golgi fragmentation and cell death. Pathogens can interfere with IFN-γ signaling and thereby potentially escape immune detection. However, when this signaling is inhibited, short-lived PIM1 is degraded, which allows GBP1 to control pathogen growth. These findings suggest a model of IFN-γ–dependent protection of uninfected bystander cells against self-inflicted innate immune damage. —Stella M. Hurtley
Phosphorylation of an IFN-γ–induced protein protects IFN-γ signaling and promotes bystander cell protection in human macrophages. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0036-8075 1095-9203 1095-9203 |
DOI: | 10.1126/science.adg2253 |