Solution structure and dynamics of ADF from Toxoplasma gondii

Toxoplasma gondii ADF (TgADF) belongs to a functional subtype characterized by strong G-actin sequestering activity and low F-actin severing activity. Among the characterized ADF/cofilin proteins, TgADF has the shortest length and is missing a C-terminal helix implicated in F-actin binding. In order...

Full description

Saved in:
Bibliographic Details
Published inJournal of structural biology Vol. 176; no. 1; pp. 97 - 111
Main Authors Yadav, Rahul, Pathak, Prem Prakash, Shukla, Vaibhav Kumar, Jain, Anupam, Srivastava, Shubhra, Tripathi, Sarita, Krishna Pulavarti, S.V.S.R., Mehta, Simren, David Sibley, L., Arora, Ashish
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Toxoplasma gondii ADF (TgADF) belongs to a functional subtype characterized by strong G-actin sequestering activity and low F-actin severing activity. Among the characterized ADF/cofilin proteins, TgADF has the shortest length and is missing a C-terminal helix implicated in F-actin binding. In order to understand its characteristic properties, we have determined the solution structure of TgADF and studied its backbone dynamics from 15N-relaxation measurements. TgADF has conserved ADF/cofilin fold consisting of a central mixed β-sheet comprised of six β-strands that are partially surrounded by three α-helices and a C-terminal helical turn. The high G-actin sequestering activity of TgADF relies on highly structurally and dynamically optimized interactions between G-actin and G-actin binding surface of TgADF. The equilibrium dissociation constant for TgADF and rabbit muscle G-actin was 23.81 nM, as measured by ITC, which reflects very strong affinity of TgADF and G-actin interactions. The F-actin binding site of TgADF is partially formed, with a shortened F-loop that does not project out of the ellipsoid structure and a C-terminal helical turn in place of the C-terminal helix α4. Yet, it is more rigid than the F-actin binding site of Leishmania donovani cofilin. Experimental observations and structural features do not support the interaction of PIP2 with TgADF, and PIP2 does not affect the interaction of TgADF with G-actin. Overall, this study suggests that conformational flexibility of G-actin binding sites enhances the affinity of TgADF for G-actin, while conformational rigidity of F-actin binding sites of conventional ADF/cofilins is necessary for stable binding to F-actin.
Bibliography:Present address: Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow – 226 001, India. Tel: 91 -522-261 2411-18 ext.4329; Fax: 91-522-262 3405
ISSN:1047-8477
1095-8657
DOI:10.1016/j.jsb.2011.07.011