Myoelectric Control Performance of Two Degree of Freedom Hand-Wrist Prosthesis by Able-Bodied and Limb-Absent Subjects

Recent research has advanced two degree-of-freedom (DoF), simultaneous, independent and proportional control of hand-wrist prostheses using surface electromyogram signals from remnant muscles as the control input. We evaluated two such regression-based controllers, along with conventional, sequentia...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 893 - 904
Main Authors Zhu, Ziling, Li, Jianan, Boyd, William J., Martinez-Luna, Carlos, Dai, Chenyun, Wang, Haopeng, Wang, He, Huang, Xinming, Farrell, Todd R., Clancy, Edward A.
Format Journal Article
LanguageEnglish
Published United States IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent research has advanced two degree-of-freedom (DoF), simultaneous, independent and proportional control of hand-wrist prostheses using surface electromyogram signals from remnant muscles as the control input. We evaluated two such regression-based controllers, along with conventional, sequential two-site control with co-contraction mode switching (SeqCon), in box-block, refined-clothespin and door-knob tasks, on 10 able-bodied and 4 limb-absent subjects. Subjects operated a commercial hand and wrist using a socket bypass harness. One 2-DoF controller (DirCon) related the intuitive hand actions of open-close and pronation-supination to the associated prosthesis hand-wrist actions, respectively. The other (MapCon) mapped myoelectrically more distinct, but less intuitive, actions of wrist flexion-extension and ulnar-radial deviation. Each 2-DoF controller was calibrated from separate 90 s calibration contractions. SeqCon performed better statistically than MapCon in the predominantly 1-DoF box-block task (>20 blocks/minute vs. 8-18 blocks/minute, on average). In this task, SeqCon likely benefited from an ability to easily focus on 1-DoF and not inadvertently trigger co-contraction for mode switching. The remaining two tasks require 2-DoFs, and both 2-DoF controllers each performed better (factor of 2-4) than SeqCon. We also compared the use of 12 vs. 6 optimally-selected EMG electrodes as inputs, finding no statistical difference. Overall, we provide further evidence of the benefits of regression-based EMG prosthesis control of 2-DoFs in the hand-wrist.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2022.3163149