Swelling and shrinking in prestressed polymer gels: an incremental stress–diffusion analysis
Polymer gels are porous fluid-saturated materials which can swell or shrink triggered by various stimuli. The swelling/shrinking-induced deformation can generate large stresses which may lead to the failure of the material. In the present research, a nonlinear stress–diffusion model is employed to i...
Saved in:
Published in | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Vol. 475; no. 2230; p. 20190174 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
The Royal Society Publishing
01.10.2019
|
Online Access | Get full text |
Cover
Loading…
Summary: | Polymer gels are porous fluid-saturated materials which can swell or shrink triggered by various stimuli. The swelling/shrinking-induced deformation can generate large stresses which may lead to the failure of the material. In the present research, a nonlinear stress–diffusion model is employed to investigate the stress and the deformation state arising in hydrated constrained polymer gels when subject to a varying chemical potential. Two different constraint configurations are taken into account: (i) elastic constraint along the thickness direction and (ii) plane elastic constraint. The first step entirely defines a compressed/tensed configuration. From there, an incremental chemo-mechanical analysis is presented. The derived model extends the classical linear poroelastic theory with respect to a prestressed configuration. Finally, the comparison between the analytical results obtained by the proposed model and a particular problem already discussed in literature for a stress-free gel membrane (one-dimensional test case) will highlight the relevance of the derived model. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1364-5021 1471-2946 |
DOI: | 10.1098/rspa.2019.0174 |