Detecting temporal lobe seizures in ultra long-term subcutaneous EEG using algorithm-based data reduction

•Ultra long-term subcutaneous EEG offers a novel option for the recording of electrographic epileptic seizures in everyday life.•A semi-automatic seizure detection process is proposed to limit the time spent on review to periods of potential seizure activity.•The algorithm of the semi-automatic dete...

Full description

Saved in:
Bibliographic Details
Published inClinical neurophysiology Vol. 142; pp. 86 - 93
Main Authors Remvig, Line S., Duun-Henriksen, Jonas, Fürbass, Franz, Hartmann, Manfred, Viana, Pedro F., Kappel Overby, Anne Mette, Weisdorf, Sigge, Richardson, Mark P., Beniczky, Sándor, Kjaer, Troels W.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2022
Subjects
Online AccessGet full text
ISSN1388-2457
1872-8952
1872-8952
DOI10.1016/j.clinph.2022.07.504

Cover

Loading…
Abstract •Ultra long-term subcutaneous EEG offers a novel option for the recording of electrographic epileptic seizures in everyday life.•A semi-automatic seizure detection process is proposed to limit the time spent on review to periods of potential seizure activity.•The algorithm of the semi-automatic detection process had a sensitivity of 86% and a false detection rate of 2.4 per 24 hours. Ultra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodology requires an algorithm-based automatic seizure detection to indicate periods of potential seizure activity to reduce the time spent on visual review. The objective of this study was to evaluate the performance of a sqEEG-based automatic seizure detection algorithm. A multicenter cohort of subjects using sqEEG were analyzed, including nine people with epilepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections of a deep-neural-network algorithm were compared to annotations from three human experts. Data reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensitivity was 86% (median 80%, range 69–100% when PWE were evaluated individually), and the corresponding median false detection rate was 2.4 detections per 24 hours (range: 2.0–13.0). Our findings demonstrated that step one in a sqEEG-based semi-automatic seizure detection/review process can be performed with high sensitivity and clinically applicable specificity. Ultra long-term sqEEG bears the potential of improving objective seizure quantification.
AbstractList •Ultra long-term subcutaneous EEG offers a novel option for the recording of electrographic epileptic seizures in everyday life.•A semi-automatic seizure detection process is proposed to limit the time spent on review to periods of potential seizure activity.•The algorithm of the semi-automatic detection process had a sensitivity of 86% and a false detection rate of 2.4 per 24 hours. Ultra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodology requires an algorithm-based automatic seizure detection to indicate periods of potential seizure activity to reduce the time spent on visual review. The objective of this study was to evaluate the performance of a sqEEG-based automatic seizure detection algorithm. A multicenter cohort of subjects using sqEEG were analyzed, including nine people with epilepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections of a deep-neural-network algorithm were compared to annotations from three human experts. Data reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensitivity was 86% (median 80%, range 69–100% when PWE were evaluated individually), and the corresponding median false detection rate was 2.4 detections per 24 hours (range: 2.0–13.0). Our findings demonstrated that step one in a sqEEG-based semi-automatic seizure detection/review process can be performed with high sensitivity and clinically applicable specificity. Ultra long-term sqEEG bears the potential of improving objective seizure quantification.
Ultra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodology requires an algorithm-based automatic seizure detection to indicate periods of potential seizure activity to reduce the time spent on visual review. The objective of this study was to evaluate the performance of a sqEEG-based automatic seizure detection algorithm.OBJECTIVEUltra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodology requires an algorithm-based automatic seizure detection to indicate periods of potential seizure activity to reduce the time spent on visual review. The objective of this study was to evaluate the performance of a sqEEG-based automatic seizure detection algorithm.A multicenter cohort of subjects using sqEEG were analyzed, including nine people with epilepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections of a deep-neural-network algorithm were compared to annotations from three human experts.METHODSA multicenter cohort of subjects using sqEEG were analyzed, including nine people with epilepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections of a deep-neural-network algorithm were compared to annotations from three human experts.Data reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensitivity was 86% (median 80%, range 69-100% when PWE were evaluated individually), and the corresponding median false detection rate was 2.4 detections per 24 hours (range: 2.0-13.0).RESULTSData reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensitivity was 86% (median 80%, range 69-100% when PWE were evaluated individually), and the corresponding median false detection rate was 2.4 detections per 24 hours (range: 2.0-13.0).Our findings demonstrated that step one in a sqEEG-based semi-automatic seizure detection/review process can be performed with high sensitivity and clinically applicable specificity.CONCLUSIONSOur findings demonstrated that step one in a sqEEG-based semi-automatic seizure detection/review process can be performed with high sensitivity and clinically applicable specificity.Ultra long-term sqEEG bears the potential of improving objective seizure quantification.SIGNIFICANCEUltra long-term sqEEG bears the potential of improving objective seizure quantification.
Highlights•Ultra long-term subcutaneous EEG offers a novel option for the recording of electrographic epileptic seizures in everyday life. •A semi-automatic seizure detection process is proposed to limit the time spent on review to periods of potential seizure activity. •The algorithm of the semi-automatic detection process had a sensitivity of 86% and a false detection rate of 2.4 per 24 hours.
Ultra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodology requires an algorithm-based automatic seizure detection to indicate periods of potential seizure activity to reduce the time spent on visual review. The objective of this study was to evaluate the performance of a sqEEG-based automatic seizure detection algorithm. A multicenter cohort of subjects using sqEEG were analyzed, including nine people with epilepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections of a deep-neural-network algorithm were compared to annotations from three human experts. Data reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensitivity was 86% (median 80%, range 69-100% when PWE were evaluated individually), and the corresponding median false detection rate was 2.4 detections per 24 hours (range: 2.0-13.0). Our findings demonstrated that step one in a sqEEG-based semi-automatic seizure detection/review process can be performed with high sensitivity and clinically applicable specificity. Ultra long-term sqEEG bears the potential of improving objective seizure quantification.
Author Remvig, Line S.
Kappel Overby, Anne Mette
Duun-Henriksen, Jonas
Beniczky, Sándor
Hartmann, Manfred
Kjaer, Troels W.
Fürbass, Franz
Viana, Pedro F.
Weisdorf, Sigge
Richardson, Mark P.
Author_xml – sequence: 1
  givenname: Line S.
  surname: Remvig
  fullname: Remvig, Line S.
  email: lsre@uneeg.com
  organization: UNEEG Medical A/S, Borupvang 2, DK-3450 Allerød, Denmark
– sequence: 2
  givenname: Jonas
  surname: Duun-Henriksen
  fullname: Duun-Henriksen, Jonas
  organization: UNEEG Medical A/S, Borupvang 2, DK-3450 Allerød, Denmark
– sequence: 3
  givenname: Franz
  surname: Fürbass
  fullname: Fürbass, Franz
  organization: Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
– sequence: 4
  givenname: Manfred
  surname: Hartmann
  fullname: Hartmann, Manfred
  organization: Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
– sequence: 5
  givenname: Pedro F.
  surname: Viana
  fullname: Viana, Pedro F.
  organization: Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, Denmark Hill, London, UK
– sequence: 6
  givenname: Anne Mette
  surname: Kappel Overby
  fullname: Kappel Overby, Anne Mette
  organization: The Danish Epilepsy Centre, Filadelfia, Kolonivej 1, 4293 Dianalund, Denmark
– sequence: 7
  givenname: Sigge
  surname: Weisdorf
  fullname: Weisdorf, Sigge
  organization: Center of Neurophysiology, Department Neurology, Zealand University Hospital, Sygehusvej 10, DK-4000 Roskilde, Denmark
– sequence: 8
  givenname: Mark P.
  surname: Richardson
  fullname: Richardson, Mark P.
  organization: Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, Denmark Hill, London, UK
– sequence: 9
  givenname: Sándor
  surname: Beniczky
  fullname: Beniczky, Sándor
  organization: The Danish Epilepsy Centre, Filadelfia, Kolonivej 1, 4293 Dianalund, Denmark
– sequence: 10
  givenname: Troels W.
  surname: Kjaer
  fullname: Kjaer, Troels W.
  organization: Center of Neurophysiology, Department Neurology, Zealand University Hospital, Sygehusvej 10, DK-4000 Roskilde, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35987094$$D View this record in MEDLINE/PubMed
BookMark eNqVkkuLFDEUhYOMOA_9ByK1dFPlTbpeERGGsR2FARfqOqSS2z1pU0mbhzD-elPUzEaQwVVCOOfLzTk5JyfOOyTkJYWGAu3fHBpljTveNgwYa2BoOmifkDM6DqweecdOyn4zjjVru-GUnMd4AIABWvaMnG46Pg7A2zNiPmBClYzbVwnnow_SVtZPWEU0v3PAWBlXZZuCLMduXycMcxXzpHKSDn2O1XZ7XeW4AKTd-2DS7VxPMqKutEyyCqhz4Xv3nDzdSRvxxf16Qb5_3H67-lTffLn-fHV5U6uO9qlWjDKQcqCTlghMDxJ2vdQcdd_1mvIy-sS7HkbONy10dKMU8IlNI3LJkdLNBXm9co_B_8wYk5hNVGjtOq9gJYOx58CgSF_dS_M0oxbHYGYZ7sRDPEXwdhWo4GMMuBPKJLm8pgRirKAgli7EQaxdiKULAYMoXRRz-5f5gf-I7f1qwxLSL4NBRGXQKdQmlKaE9uZ_AYvIKGl_4B3Gg8_BlQIEFbF4xNfllyyfhDGAsQVeAO_-DXj8_j8Xj89l
CitedBy_id crossref_primary_10_1016_j_seizure_2024_08_015
crossref_primary_10_1111_epi_17517
crossref_primary_10_1111_epi_18121
crossref_primary_10_1016_j_yebeh_2023_109557
crossref_primary_10_1111_epi_18365
crossref_primary_10_1109_TBCAS_2024_3357509
crossref_primary_10_1177_15357597231197093
crossref_primary_10_1016_j_yebeh_2023_109418
crossref_primary_10_3390_jcm14030863
crossref_primary_10_1016_j_artmed_2025_103095
crossref_primary_10_1136_bmjno_2023_000442
crossref_primary_10_1097_WCO_0000000000001248
crossref_primary_10_3389_fneur_2024_1425490
Cites_doi 10.1016/j.yebeh.2012.04.128
10.1016/S1474-4422(18)30274-6
10.1016/j.yebeh.2016.10.036
10.1111/epi.16360
10.2307/2529310
10.1016/S1474-4422(18)30038-3
10.3389/fninf.2018.00083
10.1111/epi.16969
10.1152/jn.00320.2018
10.1016/j.clinph.2017.05.013
10.1111/epi.17259
10.1111/epi.16521
10.1111/epi.16630
10.1111/epi.14052
10.1016/j.clinph.2014.09.023
10.1016/j.eplepsyres.2017.07.013
10.1038/s41467-017-02577-y
ContentType Journal Article
Copyright 2022 International Federation of Clinical Neurophysiology
Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 International Federation of Clinical Neurophysiology
– notice: Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.clinph.2022.07.504
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8952
EndPage 93
ExternalDocumentID 35987094
10_1016_j_clinph_2022_07_504
S1388245722008409
1_s2_0_S1388245722008409
Genre Research Support, Non-U.S. Gov't
Multicenter Study
Journal Article
GrantInformation_xml – fundername: Department of Health
– fundername: Medical Research Council
  grantid: MR/N026063/1
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OHT
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSN
SSZ
T5K
UAP
UNMZH
UV1
VH1
X7M
XOL
XPP
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
VQA
6I.
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFMIJ
AHPSJ
AJBFU
EFLBG
LCYCR
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c516t-c2120aa71bdae02d7a0f6ad9ed656d19359b9560899340513cc09b2b8e9a9e113
IEDL.DBID .~1
ISSN 1388-2457
1872-8952
IngestDate Fri Jul 11 10:36:35 EDT 2025
Wed Feb 19 02:06:46 EST 2025
Tue Jul 01 02:54:58 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
Fri Feb 23 02:39:01 EST 2024
Tue Feb 25 20:10:06 EST 2025
Tue Aug 26 16:35:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Long-term monitoring
sqEEG
Seizure detection
Epilepsy
Subcutaneous EEG
Outpatient monitoring
PWE
epilepsy
subcutaneous encephalography
seizure detection
people with epilepsy
long-term monitoring
subcutaneous EEG
outpatient monitoring
Language English
License This is an open access article under the CC BY license.
Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c516t-c2120aa71bdae02d7a0f6ad9ed656d19359b9560899340513cc09b2b8e9a9e113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1388245722008409
PMID 35987094
PQID 2704869020
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2704869020
pubmed_primary_35987094
crossref_citationtrail_10_1016_j_clinph_2022_07_504
crossref_primary_10_1016_j_clinph_2022_07_504
elsevier_sciencedirect_doi_10_1016_j_clinph_2022_07_504
elsevier_clinicalkeyesjournals_1_s2_0_S1388245722008409
elsevier_clinicalkey_doi_10_1016_j_clinph_2022_07_504
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Clinical neurophysiology
PublicationTitleAlternate Clin Neurophysiol
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Duun‐Henriksen, Baud, Richardson, Cook, Kouvas, Heasman (b0025) 2020; 61
Karoly, Goldenholz, Freestone, Moss, Grayden, Theodore (b0060) 2018; 17
Blachut, Hoppe, Surges, Elger, Helmstaedter (b0015) 2017; 67
Baumgartner, Koren (b0010) 2018; 59
Tan, Pang, Quoc (b0075) 2020
Baud, Kleen, Mirro, Andrechak, King-Stephens, Chang (b0005) 2018; 9
Bruno, Viana, Sperling, Richardson (b0020) 2020; 61
Viana, Remvig, Duun‐Henriksen, Glasstetter, Dümpelmann, Nurse (b0080) 2021; 62
Fisher, Blum, DiVentura, Vannest, Hixson, Moss (b0035) 2012; 24
Hartmann, Koren, Baumgartner, Duun-Henriksen, Gritsch, Kluge (b0055) 2022
Fürbass, Kampusch, Kaniusas, Koren, Pirker, Hopfengärtner (b0040) 2017; 128
Shah, von Weltin, Lopez, McHugh, Veloso, Golmohammadi (b0070) 2018; 12
Weisdorf, Gangstad, Duun-Henriksen, Mosholt, Kjær (b0090) 2018; 120
Elger, Hoppe (b0030) 2018; 17
Fürbass, Ossenblok, Hartmann, Perko, Skupch, Lindinger (b0045) 2015; 126
Weisdorf, Duun-Henriksen, Kjeldsen, Poulsen, Gangstad, Kjær (b0085) 2019; 60
Landis, Koch (b0065) 1977; 33
Goldenholz, Goldenholz, Moss, French, Lowenstein, Kuzniecky (b0050) 2017; 137
Tan (10.1016/j.clinph.2022.07.504_b0075) 2020
Baud (10.1016/j.clinph.2022.07.504_b0005) 2018; 9
Karoly (10.1016/j.clinph.2022.07.504_b0060) 2018; 17
Bruno (10.1016/j.clinph.2022.07.504_b0020) 2020; 61
Weisdorf (10.1016/j.clinph.2022.07.504_b0085) 2019; 60
Goldenholz (10.1016/j.clinph.2022.07.504_b0050) 2017; 137
Weisdorf (10.1016/j.clinph.2022.07.504_b0090) 2018; 120
Duun‐Henriksen (10.1016/j.clinph.2022.07.504_b0025) 2020; 61
Blachut (10.1016/j.clinph.2022.07.504_b0015) 2017; 67
Elger (10.1016/j.clinph.2022.07.504_b0030) 2018; 17
Shah (10.1016/j.clinph.2022.07.504_b0070) 2018; 12
Landis (10.1016/j.clinph.2022.07.504_b0065) 1977; 33
Fürbass (10.1016/j.clinph.2022.07.504_b0045) 2015; 126
Fisher (10.1016/j.clinph.2022.07.504_b0035) 2012; 24
Baumgartner (10.1016/j.clinph.2022.07.504_b0010) 2018; 59
Fürbass (10.1016/j.clinph.2022.07.504_b0040) 2017; 128
Hartmann (10.1016/j.clinph.2022.07.504_b0055) 2022
Viana (10.1016/j.clinph.2022.07.504_b0080) 2021; 62
38269339 - Epilepsy Curr. 2023 Aug 29;23(6):351-353
References_xml – volume: 67
  start-page: 122
  year: 2017
  end-page: 217
  ident: b0015
  article-title: Subjective Seizure Counts by Epilepsy Clinical Drug Trial Participants Are Not Reliable
  publication-title: Epilepsy Behav
– start-page: 10778
  year: 2020
  end-page: 10787
  ident: b0075
  article-title: EfficientDet: Scalable and Efficient Object Detection
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 60
  start-page: 2204
  year: 2019
  end-page: 2214
  ident: b0085
  article-title: Ultra-long-term Subcutaneous Home Monitoring of Epilepsy—490 Days of EEG from Nine Patients
  publication-title: Epilepsia
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  ident: b0065
  article-title: The Measurement of Observer Agreement for Categorical Data
  publication-title: Biometrics
– volume: 61
  start-page: 1805
  year: 2020
  end-page: 1817
  ident: b0025
  article-title: A New Era in Electroencephalographic Monitoring? Subscalp Devices for Ultra–Long-Term Recordings
  publication-title: Epilepsia
– volume: 126
  start-page: 1124
  year: 2015
  end-page: 1131
  ident: b0045
  article-title: Prospective Multi-Center Study of an Automatic Online Seizure Detection System for Epilepsy Monitoring Units
  publication-title: Clin Neurophysiol
– volume: 9
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0005
  article-title: Multi-Day Rhythms Modulate Seizure Risk in Epilepsy
  publication-title: Nat Commun
– volume: 120
  start-page: 1451
  year: 2018
  end-page: 1460
  ident: b0090
  article-title: High Similarity between EEG from Subcutaneous and Proximate Scalp Electrodes in Patients with Temporal Lobe Epilepsy
  publication-title: J Neurophysiol
– volume: 137
  start-page: 145
  year: 2017
  end-page: 151
  ident: b0050
  article-title: Does Accounting for Seizure Frequency Variability Increase Clinical Trial Power?
  publication-title: Epilepsy Res
– volume: 61
  year: 2020
  ident: b0020
  article-title: Seizure Detection at Home: Do Devices on the Market Match the Needs of People Living with Epilepsy and Their Caregivers?
  publication-title: Epilepsia
– volume: 17
  start-page: 977
  year: 2018
  end-page: 985
  ident: b0060
  article-title: Circadian and Circaseptan Rhythms in Human Epilepsy: A Retrospective Cohort Study
  publication-title: Lancet Neurol
– volume: 62
  start-page: 1820
  year: 2021
  end-page: 1828
  ident: b0080
  article-title: Signal Quality and Power Spectrum Analysis of Remote Ultra Long-Term Subcutaneous EEG
  publication-title: Epilepsia
– volume: 24
  start-page: 304
  year: 2012
  end-page: 310
  ident: b0035
  article-title: Seizure Diaries for Clinical Research and Practice: Limitations and Future Prospects
  publication-title: Article
– volume: 128
  start-page: 1466
  year: 2017
  end-page: 1472
  ident: b0040
  article-title: Automatic Multimodal Detection for Long-Term Seizure Documentation in Epilepsy
  publication-title: Clin Neurophysiol
– year: 2022
  ident: b0055
  article-title: Seizure Detection with Deep Neural Networks for Review of Two-Channel EEG
  publication-title: Epilepsia
– volume: 12
  start-page: 1
  year: 2018
  end-page: 6
  ident: b0070
  article-title: The Temple University Hospital Seizure Detection Corpus
  publication-title: Front Neuroinform
– volume: 59
  start-page: 14
  year: 2018
  end-page: 22
  ident: b0010
  article-title: Seizure Detection Using Scalp-EEG
  publication-title: Epilepsia
– volume: 17
  start-page: 279
  year: 2018
  end-page: 288
  ident: b0030
  article-title: Diagnostic Challenges in Epilepsy: Seizure under-Reporting and Seizure Detection
  publication-title: Lancet Neurol
– volume: 24
  start-page: 304
  issue: 3
  year: 2012
  ident: 10.1016/j.clinph.2022.07.504_b0035
  article-title: Seizure Diaries for Clinical Research and Practice: Limitations and Future Prospects
  publication-title: Article Epilepsy Behav
  doi: 10.1016/j.yebeh.2012.04.128
– volume: 17
  start-page: 977
  issue: 11
  year: 2018
  ident: 10.1016/j.clinph.2022.07.504_b0060
  article-title: Circadian and Circaseptan Rhythms in Human Epilepsy: A Retrospective Cohort Study
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(18)30274-6
– volume: 67
  start-page: 122
  issue: February
  year: 2017
  ident: 10.1016/j.clinph.2022.07.504_b0015
  article-title: Subjective Seizure Counts by Epilepsy Clinical Drug Trial Participants Are Not Reliable
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2016.10.036
– volume: 60
  start-page: 2204
  issue: 11
  year: 2019
  ident: 10.1016/j.clinph.2022.07.504_b0085
  article-title: Ultra-long-term Subcutaneous Home Monitoring of Epilepsy—490 Days of EEG from Nine Patients
  publication-title: Epilepsia
  doi: 10.1111/epi.16360
– volume: 33
  start-page: 159
  issue: 1
  year: 1977
  ident: 10.1016/j.clinph.2022.07.504_b0065
  article-title: The Measurement of Observer Agreement for Categorical Data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 17
  start-page: 279
  issue: 3
  year: 2018
  ident: 10.1016/j.clinph.2022.07.504_b0030
  article-title: Diagnostic Challenges in Epilepsy: Seizure under-Reporting and Seizure Detection
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(18)30038-3
– volume: 12
  start-page: 1
  year: 2018
  ident: 10.1016/j.clinph.2022.07.504_b0070
  article-title: The Temple University Hospital Seizure Detection Corpus
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2018.00083
– volume: 62
  start-page: 1820
  issue: 8
  year: 2021
  ident: 10.1016/j.clinph.2022.07.504_b0080
  article-title: Signal Quality and Power Spectrum Analysis of Remote Ultra Long-Term Subcutaneous EEG
  publication-title: Epilepsia
  doi: 10.1111/epi.16969
– start-page: 10778
  year: 2020
  ident: 10.1016/j.clinph.2022.07.504_b0075
  article-title: EfficientDet: Scalable and Efficient Object Detection
– volume: 120
  start-page: 1451
  issue: 3
  year: 2018
  ident: 10.1016/j.clinph.2022.07.504_b0090
  article-title: High Similarity between EEG from Subcutaneous and Proximate Scalp Electrodes in Patients with Temporal Lobe Epilepsy
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00320.2018
– volume: 128
  start-page: 1466
  issue: 8
  year: 2017
  ident: 10.1016/j.clinph.2022.07.504_b0040
  article-title: Automatic Multimodal Detection for Long-Term Seizure Documentation in Epilepsy
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2017.05.013
– year: 2022
  ident: 10.1016/j.clinph.2022.07.504_b0055
  article-title: Seizure Detection with Deep Neural Networks for Review of Two-Channel EEG
  publication-title: Epilepsia
  doi: 10.1111/epi.17259
– volume: 61
  issue: S1
  year: 2020
  ident: 10.1016/j.clinph.2022.07.504_b0020
  article-title: Seizure Detection at Home: Do Devices on the Market Match the Needs of People Living with Epilepsy and Their Caregivers?
  publication-title: Epilepsia
  doi: 10.1111/epi.16521
– volume: 61
  start-page: 1805
  issue: 9
  year: 2020
  ident: 10.1016/j.clinph.2022.07.504_b0025
  article-title: A New Era in Electroencephalographic Monitoring? Subscalp Devices for Ultra–Long-Term Recordings
  publication-title: Epilepsia
  doi: 10.1111/epi.16630
– volume: 59
  start-page: 14
  year: 2018
  ident: 10.1016/j.clinph.2022.07.504_b0010
  article-title: Seizure Detection Using Scalp-EEG
  publication-title: Epilepsia
  doi: 10.1111/epi.14052
– volume: 126
  start-page: 1124
  issue: 6
  year: 2015
  ident: 10.1016/j.clinph.2022.07.504_b0045
  article-title: Prospective Multi-Center Study of an Automatic Online Seizure Detection System for Epilepsy Monitoring Units
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.09.023
– volume: 137
  start-page: 145
  year: 2017
  ident: 10.1016/j.clinph.2022.07.504_b0050
  article-title: Does Accounting for Seizure Frequency Variability Increase Clinical Trial Power?
  publication-title: Epilepsy Res
  doi: 10.1016/j.eplepsyres.2017.07.013
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.clinph.2022.07.504_b0005
  article-title: Multi-Day Rhythms Modulate Seizure Risk in Epilepsy
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02577-y
– reference: 38269339 - Epilepsy Curr. 2023 Aug 29;23(6):351-353
SSID ssj0007042
Score 2.4865692
Snippet •Ultra long-term subcutaneous EEG offers a novel option for the recording of electrographic epileptic seizures in everyday life.•A semi-automatic seizure...
Highlights•Ultra long-term subcutaneous EEG offers a novel option for the recording of electrographic epileptic seizures in everyday life. •A semi-automatic...
Ultra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 86
SubjectTerms Algorithms
Electroencephalography - methods
Epilepsy
Epilepsy - diagnosis
Epilepsy, Temporal Lobe - diagnosis
Humans
Long-term monitoring
Neurology
Outpatient monitoring
Seizure detection
Seizures - diagnosis
Subcutaneous EEG
Temporal Lobe
Title Detecting temporal lobe seizures in ultra long-term subcutaneous EEG using algorithm-based data reduction
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1388245722008409
https://www.clinicalkey.es/playcontent/1-s2.0-S1388245722008409
https://dx.doi.org/10.1016/j.clinph.2022.07.504
https://www.ncbi.nlm.nih.gov/pubmed/35987094
https://www.proquest.com/docview/2704869020
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtww0EJUQr1ULfSx5SEjcXU3zsvJEcHCQgUXisTNsh17G7TNrjbJpQe-nZnEoUUFgXpMNCMnM-N5aF6EHCjrXJw5xQKjMhaDS8DyNHPMpIHNuQGF2HW5Xlym0-v4_Ca5WSNHQy8MllV63d_r9E5b-zdjT83xsizHVzwC7zBORIgp_Lhr4sPpdSDT3-7-lHmIoFugg8AMoYf2ua7GC7sPl5iSCEMc4Zn4dW1PmKfn3M_ODJ28J--8_0gP-0_8QNZstUk2LnyGfIuUxxbTAmCQqJ86NadYUEFrW_5uIbamZUXbebNS8LqaMdTMtG61acFLtIu2ppPJKcVq-BlV89liVTY_fzG0dQXFalK6wlmvyM2P5Ppk8uNoyvw6BWYSnjbMgJUKlBJcF8oGYSFU4FJV5LYAn67g2KKrMVqCCCwCnvHImCDXoc5srnLLefSJrFeLyn7BRm8IZIzizqY6FmGmXRw5B3Yv0pnLXDgi0UBFafyscVx5MZdDUdmt7GkvkfYyEBJoPyLsAWvZz9p4AT4ZGCSHPlLQfBKMwQt44ik8W_vrW0suawCW_4jY35iPpPQVZ-4PEiThAmNWpueqDAVOPczBbR-Rz71oPfw9jlcUEIB__e9zt8lbfOrLD3fIerNq7S64UY3e6-7JHnlzePZ9enkPC1QczQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaKFNh2Gbp3um7TgF2FWH7JPhZtunRtclkL9CZIspR6yJwgti_99SNtOeiwDh12tUXIJik-QPITIV-UdS7OnGKBURmLISRgeZo5ZtLA5tyAQeymXOeLdHYdf7tJbvbIyTALg22V3vb3Nr2z1v7JxHNzsinLyXceQXQYJyLEEn6MQ3z7iE4Vj8j-8fnFbLEzyCLo7tDB9QwJhgm6rs0LBxA3WJUIQ0TxTPyNbQ94qL9FoJ0nOjsgz30ISY_7r3xB9mz1kjyZ-yL5K1KeWqwMgE-iHnhqRbGngta2vGshvaZlRdtVs1XwuFoyNM60brVpIVC067am0-lXig3xS6pWy_W2bG5_MnR3BcWGUrpFuFcU6GtyfTa9Opkxf6MCMwlPG2bAUQVKCa4LZYOwECpwqSpyW0BYV3Cc0tWYMEESFoHYeGRMkOtQZzZXueU8ekNG1bqy73DWG3IZo7izqY5FmGkXR86B64t05jIXjkk0cFEaDzeOt16s5NBX9kP2vJfIexkICbwfE7aj2vRwG4-sTwYByWGUFIyfBH_wCJ14iM7W_gTXkssaFss_tOw-5W-K-g97fh40SMIZxsJML1UZCgQ-zCFyH5O3vWrt_h4RFgXk4If_ve8n8nR2Nb-Ul-eLi_fkGb7puxGPyKjZtvYDRFWN_uhPzS-6rB9-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+temporal+lobe+seizures+in+ultra+long-term+subcutaneous+EEG+using+algorithm-based+data+reduction&rft.jtitle=Clinical+neurophysiology&rft.au=Remvig%2C+Line+S.&rft.au=Duun-Henriksen%2C+Jonas&rft.au=F%C3%BCrbass%2C+Franz&rft.au=Hartmann%2C+Manfred&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=1388-2457&rft.volume=142&rft.spage=86&rft.epage=93&rft_id=info:doi/10.1016%2Fj.clinph.2022.07.504&rft.externalDocID=S1388245722008409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2457&client=summon