Detecting temporal lobe seizures in ultra long-term subcutaneous EEG using algorithm-based data reduction
•Ultra long-term subcutaneous EEG offers a novel option for the recording of electrographic epileptic seizures in everyday life.•A semi-automatic seizure detection process is proposed to limit the time spent on review to periods of potential seizure activity.•The algorithm of the semi-automatic dete...
Saved in:
Published in | Clinical neurophysiology Vol. 142; pp. 86 - 93 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1388-2457 1872-8952 1872-8952 |
DOI | 10.1016/j.clinph.2022.07.504 |
Cover
Loading…
Abstract | •Ultra long-term subcutaneous EEG offers a novel option for the recording of electrographic epileptic seizures in everyday life.•A semi-automatic seizure detection process is proposed to limit the time spent on review to periods of potential seizure activity.•The algorithm of the semi-automatic detection process had a sensitivity of 86% and a false detection rate of 2.4 per 24 hours.
Ultra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodology requires an algorithm-based automatic seizure detection to indicate periods of potential seizure activity to reduce the time spent on visual review. The objective of this study was to evaluate the performance of a sqEEG-based automatic seizure detection algorithm.
A multicenter cohort of subjects using sqEEG were analyzed, including nine people with epilepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections of a deep-neural-network algorithm were compared to annotations from three human experts.
Data reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensitivity was 86% (median 80%, range 69–100% when PWE were evaluated individually), and the corresponding median false detection rate was 2.4 detections per 24 hours (range: 2.0–13.0).
Our findings demonstrated that step one in a sqEEG-based semi-automatic seizure detection/review process can be performed with high sensitivity and clinically applicable specificity.
Ultra long-term sqEEG bears the potential of improving objective seizure quantification. |
---|---|
AbstractList | •Ultra long-term subcutaneous EEG offers a novel option for the recording of electrographic epileptic seizures in everyday life.•A semi-automatic seizure detection process is proposed to limit the time spent on review to periods of potential seizure activity.•The algorithm of the semi-automatic detection process had a sensitivity of 86% and a false detection rate of 2.4 per 24 hours.
Ultra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodology requires an algorithm-based automatic seizure detection to indicate periods of potential seizure activity to reduce the time spent on visual review. The objective of this study was to evaluate the performance of a sqEEG-based automatic seizure detection algorithm.
A multicenter cohort of subjects using sqEEG were analyzed, including nine people with epilepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections of a deep-neural-network algorithm were compared to annotations from three human experts.
Data reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensitivity was 86% (median 80%, range 69–100% when PWE were evaluated individually), and the corresponding median false detection rate was 2.4 detections per 24 hours (range: 2.0–13.0).
Our findings demonstrated that step one in a sqEEG-based semi-automatic seizure detection/review process can be performed with high sensitivity and clinically applicable specificity.
Ultra long-term sqEEG bears the potential of improving objective seizure quantification. Ultra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodology requires an algorithm-based automatic seizure detection to indicate periods of potential seizure activity to reduce the time spent on visual review. The objective of this study was to evaluate the performance of a sqEEG-based automatic seizure detection algorithm.OBJECTIVEUltra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodology requires an algorithm-based automatic seizure detection to indicate periods of potential seizure activity to reduce the time spent on visual review. The objective of this study was to evaluate the performance of a sqEEG-based automatic seizure detection algorithm.A multicenter cohort of subjects using sqEEG were analyzed, including nine people with epilepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections of a deep-neural-network algorithm were compared to annotations from three human experts.METHODSA multicenter cohort of subjects using sqEEG were analyzed, including nine people with epilepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections of a deep-neural-network algorithm were compared to annotations from three human experts.Data reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensitivity was 86% (median 80%, range 69-100% when PWE were evaluated individually), and the corresponding median false detection rate was 2.4 detections per 24 hours (range: 2.0-13.0).RESULTSData reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensitivity was 86% (median 80%, range 69-100% when PWE were evaluated individually), and the corresponding median false detection rate was 2.4 detections per 24 hours (range: 2.0-13.0).Our findings demonstrated that step one in a sqEEG-based semi-automatic seizure detection/review process can be performed with high sensitivity and clinically applicable specificity.CONCLUSIONSOur findings demonstrated that step one in a sqEEG-based semi-automatic seizure detection/review process can be performed with high sensitivity and clinically applicable specificity.Ultra long-term sqEEG bears the potential of improving objective seizure quantification.SIGNIFICANCEUltra long-term sqEEG bears the potential of improving objective seizure quantification. Highlights•Ultra long-term subcutaneous EEG offers a novel option for the recording of electrographic epileptic seizures in everyday life. •A semi-automatic seizure detection process is proposed to limit the time spent on review to periods of potential seizure activity. •The algorithm of the semi-automatic detection process had a sensitivity of 86% and a false detection rate of 2.4 per 24 hours. Ultra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodology requires an algorithm-based automatic seizure detection to indicate periods of potential seizure activity to reduce the time spent on visual review. The objective of this study was to evaluate the performance of a sqEEG-based automatic seizure detection algorithm. A multicenter cohort of subjects using sqEEG were analyzed, including nine people with epilepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections of a deep-neural-network algorithm were compared to annotations from three human experts. Data reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensitivity was 86% (median 80%, range 69-100% when PWE were evaluated individually), and the corresponding median false detection rate was 2.4 detections per 24 hours (range: 2.0-13.0). Our findings demonstrated that step one in a sqEEG-based semi-automatic seizure detection/review process can be performed with high sensitivity and clinically applicable specificity. Ultra long-term sqEEG bears the potential of improving objective seizure quantification. |
Author | Remvig, Line S. Kappel Overby, Anne Mette Duun-Henriksen, Jonas Beniczky, Sándor Hartmann, Manfred Kjaer, Troels W. Fürbass, Franz Viana, Pedro F. Weisdorf, Sigge Richardson, Mark P. |
Author_xml | – sequence: 1 givenname: Line S. surname: Remvig fullname: Remvig, Line S. email: lsre@uneeg.com organization: UNEEG Medical A/S, Borupvang 2, DK-3450 Allerød, Denmark – sequence: 2 givenname: Jonas surname: Duun-Henriksen fullname: Duun-Henriksen, Jonas organization: UNEEG Medical A/S, Borupvang 2, DK-3450 Allerød, Denmark – sequence: 3 givenname: Franz surname: Fürbass fullname: Fürbass, Franz organization: Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria – sequence: 4 givenname: Manfred surname: Hartmann fullname: Hartmann, Manfred organization: Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria – sequence: 5 givenname: Pedro F. surname: Viana fullname: Viana, Pedro F. organization: Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, Denmark Hill, London, UK – sequence: 6 givenname: Anne Mette surname: Kappel Overby fullname: Kappel Overby, Anne Mette organization: The Danish Epilepsy Centre, Filadelfia, Kolonivej 1, 4293 Dianalund, Denmark – sequence: 7 givenname: Sigge surname: Weisdorf fullname: Weisdorf, Sigge organization: Center of Neurophysiology, Department Neurology, Zealand University Hospital, Sygehusvej 10, DK-4000 Roskilde, Denmark – sequence: 8 givenname: Mark P. surname: Richardson fullname: Richardson, Mark P. organization: Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, Denmark Hill, London, UK – sequence: 9 givenname: Sándor surname: Beniczky fullname: Beniczky, Sándor organization: The Danish Epilepsy Centre, Filadelfia, Kolonivej 1, 4293 Dianalund, Denmark – sequence: 10 givenname: Troels W. surname: Kjaer fullname: Kjaer, Troels W. organization: Center of Neurophysiology, Department Neurology, Zealand University Hospital, Sygehusvej 10, DK-4000 Roskilde, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35987094$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkkuLFDEUhYOMOA_9ByK1dFPlTbpeERGGsR2FARfqOqSS2z1pU0mbhzD-elPUzEaQwVVCOOfLzTk5JyfOOyTkJYWGAu3fHBpljTveNgwYa2BoOmifkDM6DqweecdOyn4zjjVru-GUnMd4AIABWvaMnG46Pg7A2zNiPmBClYzbVwnnow_SVtZPWEU0v3PAWBlXZZuCLMduXycMcxXzpHKSDn2O1XZ7XeW4AKTd-2DS7VxPMqKutEyyCqhz4Xv3nDzdSRvxxf16Qb5_3H67-lTffLn-fHV5U6uO9qlWjDKQcqCTlghMDxJ2vdQcdd_1mvIy-sS7HkbONy10dKMU8IlNI3LJkdLNBXm9co_B_8wYk5hNVGjtOq9gJYOx58CgSF_dS_M0oxbHYGYZ7sRDPEXwdhWo4GMMuBPKJLm8pgRirKAgli7EQaxdiKULAYMoXRRz-5f5gf-I7f1qwxLSL4NBRGXQKdQmlKaE9uZ_AYvIKGl_4B3Gg8_BlQIEFbF4xNfllyyfhDGAsQVeAO_-DXj8_j8Xj89l |
CitedBy_id | crossref_primary_10_1016_j_seizure_2024_08_015 crossref_primary_10_1111_epi_17517 crossref_primary_10_1111_epi_18121 crossref_primary_10_1016_j_yebeh_2023_109557 crossref_primary_10_1111_epi_18365 crossref_primary_10_1109_TBCAS_2024_3357509 crossref_primary_10_1177_15357597231197093 crossref_primary_10_1016_j_yebeh_2023_109418 crossref_primary_10_3390_jcm14030863 crossref_primary_10_1016_j_artmed_2025_103095 crossref_primary_10_1136_bmjno_2023_000442 crossref_primary_10_1097_WCO_0000000000001248 crossref_primary_10_3389_fneur_2024_1425490 |
Cites_doi | 10.1016/j.yebeh.2012.04.128 10.1016/S1474-4422(18)30274-6 10.1016/j.yebeh.2016.10.036 10.1111/epi.16360 10.2307/2529310 10.1016/S1474-4422(18)30038-3 10.3389/fninf.2018.00083 10.1111/epi.16969 10.1152/jn.00320.2018 10.1016/j.clinph.2017.05.013 10.1111/epi.17259 10.1111/epi.16521 10.1111/epi.16630 10.1111/epi.14052 10.1016/j.clinph.2014.09.023 10.1016/j.eplepsyres.2017.07.013 10.1038/s41467-017-02577-y |
ContentType | Journal Article |
Copyright | 2022 International Federation of Clinical Neurophysiology Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 International Federation of Clinical Neurophysiology – notice: Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.clinph.2022.07.504 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-8952 |
EndPage | 93 |
ExternalDocumentID | 35987094 10_1016_j_clinph_2022_07_504 S1388245722008409 1_s2_0_S1388245722008409 |
Genre | Research Support, Non-U.S. Gov't Multicenter Study Journal Article |
GrantInformation_xml | – fundername: Department of Health – fundername: Medical Research Council grantid: MR/N026063/1 |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HX~ HZ~ IHE J1W K-O KOM L7B M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OHT OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSN SSZ T5K UAP UNMZH UV1 VH1 X7M XOL XPP Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW PKN RIG VQA 6I. AADPK AAFTH AAIAV ABLVK ABYKQ AFMIJ AHPSJ AJBFU EFLBG LCYCR ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c516t-c2120aa71bdae02d7a0f6ad9ed656d19359b9560899340513cc09b2b8e9a9e113 |
IEDL.DBID | .~1 |
ISSN | 1388-2457 1872-8952 |
IngestDate | Fri Jul 11 10:36:35 EDT 2025 Wed Feb 19 02:06:46 EST 2025 Tue Jul 01 02:54:58 EDT 2025 Thu Apr 24 23:04:11 EDT 2025 Fri Feb 23 02:39:01 EST 2024 Tue Feb 25 20:10:06 EST 2025 Tue Aug 26 16:35:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Long-term monitoring sqEEG Seizure detection Epilepsy Subcutaneous EEG Outpatient monitoring PWE epilepsy subcutaneous encephalography seizure detection people with epilepsy long-term monitoring subcutaneous EEG outpatient monitoring |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c516t-c2120aa71bdae02d7a0f6ad9ed656d19359b9560899340513cc09b2b8e9a9e113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1388245722008409 |
PMID | 35987094 |
PQID | 2704869020 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2704869020 pubmed_primary_35987094 crossref_citationtrail_10_1016_j_clinph_2022_07_504 crossref_primary_10_1016_j_clinph_2022_07_504 elsevier_sciencedirect_doi_10_1016_j_clinph_2022_07_504 elsevier_clinicalkeyesjournals_1_s2_0_S1388245722008409 elsevier_clinicalkey_doi_10_1016_j_clinph_2022_07_504 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Clinical neurophysiology |
PublicationTitleAlternate | Clin Neurophysiol |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Duun‐Henriksen, Baud, Richardson, Cook, Kouvas, Heasman (b0025) 2020; 61 Karoly, Goldenholz, Freestone, Moss, Grayden, Theodore (b0060) 2018; 17 Blachut, Hoppe, Surges, Elger, Helmstaedter (b0015) 2017; 67 Baumgartner, Koren (b0010) 2018; 59 Tan, Pang, Quoc (b0075) 2020 Baud, Kleen, Mirro, Andrechak, King-Stephens, Chang (b0005) 2018; 9 Bruno, Viana, Sperling, Richardson (b0020) 2020; 61 Viana, Remvig, Duun‐Henriksen, Glasstetter, Dümpelmann, Nurse (b0080) 2021; 62 Fisher, Blum, DiVentura, Vannest, Hixson, Moss (b0035) 2012; 24 Hartmann, Koren, Baumgartner, Duun-Henriksen, Gritsch, Kluge (b0055) 2022 Fürbass, Kampusch, Kaniusas, Koren, Pirker, Hopfengärtner (b0040) 2017; 128 Shah, von Weltin, Lopez, McHugh, Veloso, Golmohammadi (b0070) 2018; 12 Weisdorf, Gangstad, Duun-Henriksen, Mosholt, Kjær (b0090) 2018; 120 Elger, Hoppe (b0030) 2018; 17 Fürbass, Ossenblok, Hartmann, Perko, Skupch, Lindinger (b0045) 2015; 126 Weisdorf, Duun-Henriksen, Kjeldsen, Poulsen, Gangstad, Kjær (b0085) 2019; 60 Landis, Koch (b0065) 1977; 33 Goldenholz, Goldenholz, Moss, French, Lowenstein, Kuzniecky (b0050) 2017; 137 Tan (10.1016/j.clinph.2022.07.504_b0075) 2020 Baud (10.1016/j.clinph.2022.07.504_b0005) 2018; 9 Karoly (10.1016/j.clinph.2022.07.504_b0060) 2018; 17 Bruno (10.1016/j.clinph.2022.07.504_b0020) 2020; 61 Weisdorf (10.1016/j.clinph.2022.07.504_b0085) 2019; 60 Goldenholz (10.1016/j.clinph.2022.07.504_b0050) 2017; 137 Weisdorf (10.1016/j.clinph.2022.07.504_b0090) 2018; 120 Duun‐Henriksen (10.1016/j.clinph.2022.07.504_b0025) 2020; 61 Blachut (10.1016/j.clinph.2022.07.504_b0015) 2017; 67 Elger (10.1016/j.clinph.2022.07.504_b0030) 2018; 17 Shah (10.1016/j.clinph.2022.07.504_b0070) 2018; 12 Landis (10.1016/j.clinph.2022.07.504_b0065) 1977; 33 Fürbass (10.1016/j.clinph.2022.07.504_b0045) 2015; 126 Fisher (10.1016/j.clinph.2022.07.504_b0035) 2012; 24 Baumgartner (10.1016/j.clinph.2022.07.504_b0010) 2018; 59 Fürbass (10.1016/j.clinph.2022.07.504_b0040) 2017; 128 Hartmann (10.1016/j.clinph.2022.07.504_b0055) 2022 Viana (10.1016/j.clinph.2022.07.504_b0080) 2021; 62 38269339 - Epilepsy Curr. 2023 Aug 29;23(6):351-353 |
References_xml | – volume: 67 start-page: 122 year: 2017 end-page: 217 ident: b0015 article-title: Subjective Seizure Counts by Epilepsy Clinical Drug Trial Participants Are Not Reliable publication-title: Epilepsy Behav – start-page: 10778 year: 2020 end-page: 10787 ident: b0075 article-title: EfficientDet: Scalable and Efficient Object Detection publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 60 start-page: 2204 year: 2019 end-page: 2214 ident: b0085 article-title: Ultra-long-term Subcutaneous Home Monitoring of Epilepsy—490 Days of EEG from Nine Patients publication-title: Epilepsia – volume: 33 start-page: 159 year: 1977 end-page: 174 ident: b0065 article-title: The Measurement of Observer Agreement for Categorical Data publication-title: Biometrics – volume: 61 start-page: 1805 year: 2020 end-page: 1817 ident: b0025 article-title: A New Era in Electroencephalographic Monitoring? Subscalp Devices for Ultra–Long-Term Recordings publication-title: Epilepsia – volume: 126 start-page: 1124 year: 2015 end-page: 1131 ident: b0045 article-title: Prospective Multi-Center Study of an Automatic Online Seizure Detection System for Epilepsy Monitoring Units publication-title: Clin Neurophysiol – volume: 9 start-page: 1 year: 2018 end-page: 10 ident: b0005 article-title: Multi-Day Rhythms Modulate Seizure Risk in Epilepsy publication-title: Nat Commun – volume: 120 start-page: 1451 year: 2018 end-page: 1460 ident: b0090 article-title: High Similarity between EEG from Subcutaneous and Proximate Scalp Electrodes in Patients with Temporal Lobe Epilepsy publication-title: J Neurophysiol – volume: 137 start-page: 145 year: 2017 end-page: 151 ident: b0050 article-title: Does Accounting for Seizure Frequency Variability Increase Clinical Trial Power? publication-title: Epilepsy Res – volume: 61 year: 2020 ident: b0020 article-title: Seizure Detection at Home: Do Devices on the Market Match the Needs of People Living with Epilepsy and Their Caregivers? publication-title: Epilepsia – volume: 17 start-page: 977 year: 2018 end-page: 985 ident: b0060 article-title: Circadian and Circaseptan Rhythms in Human Epilepsy: A Retrospective Cohort Study publication-title: Lancet Neurol – volume: 62 start-page: 1820 year: 2021 end-page: 1828 ident: b0080 article-title: Signal Quality and Power Spectrum Analysis of Remote Ultra Long-Term Subcutaneous EEG publication-title: Epilepsia – volume: 24 start-page: 304 year: 2012 end-page: 310 ident: b0035 article-title: Seizure Diaries for Clinical Research and Practice: Limitations and Future Prospects publication-title: Article – volume: 128 start-page: 1466 year: 2017 end-page: 1472 ident: b0040 article-title: Automatic Multimodal Detection for Long-Term Seizure Documentation in Epilepsy publication-title: Clin Neurophysiol – year: 2022 ident: b0055 article-title: Seizure Detection with Deep Neural Networks for Review of Two-Channel EEG publication-title: Epilepsia – volume: 12 start-page: 1 year: 2018 end-page: 6 ident: b0070 article-title: The Temple University Hospital Seizure Detection Corpus publication-title: Front Neuroinform – volume: 59 start-page: 14 year: 2018 end-page: 22 ident: b0010 article-title: Seizure Detection Using Scalp-EEG publication-title: Epilepsia – volume: 17 start-page: 279 year: 2018 end-page: 288 ident: b0030 article-title: Diagnostic Challenges in Epilepsy: Seizure under-Reporting and Seizure Detection publication-title: Lancet Neurol – volume: 24 start-page: 304 issue: 3 year: 2012 ident: 10.1016/j.clinph.2022.07.504_b0035 article-title: Seizure Diaries for Clinical Research and Practice: Limitations and Future Prospects publication-title: Article Epilepsy Behav doi: 10.1016/j.yebeh.2012.04.128 – volume: 17 start-page: 977 issue: 11 year: 2018 ident: 10.1016/j.clinph.2022.07.504_b0060 article-title: Circadian and Circaseptan Rhythms in Human Epilepsy: A Retrospective Cohort Study publication-title: Lancet Neurol doi: 10.1016/S1474-4422(18)30274-6 – volume: 67 start-page: 122 issue: February year: 2017 ident: 10.1016/j.clinph.2022.07.504_b0015 article-title: Subjective Seizure Counts by Epilepsy Clinical Drug Trial Participants Are Not Reliable publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2016.10.036 – volume: 60 start-page: 2204 issue: 11 year: 2019 ident: 10.1016/j.clinph.2022.07.504_b0085 article-title: Ultra-long-term Subcutaneous Home Monitoring of Epilepsy—490 Days of EEG from Nine Patients publication-title: Epilepsia doi: 10.1111/epi.16360 – volume: 33 start-page: 159 issue: 1 year: 1977 ident: 10.1016/j.clinph.2022.07.504_b0065 article-title: The Measurement of Observer Agreement for Categorical Data publication-title: Biometrics doi: 10.2307/2529310 – volume: 17 start-page: 279 issue: 3 year: 2018 ident: 10.1016/j.clinph.2022.07.504_b0030 article-title: Diagnostic Challenges in Epilepsy: Seizure under-Reporting and Seizure Detection publication-title: Lancet Neurol doi: 10.1016/S1474-4422(18)30038-3 – volume: 12 start-page: 1 year: 2018 ident: 10.1016/j.clinph.2022.07.504_b0070 article-title: The Temple University Hospital Seizure Detection Corpus publication-title: Front Neuroinform doi: 10.3389/fninf.2018.00083 – volume: 62 start-page: 1820 issue: 8 year: 2021 ident: 10.1016/j.clinph.2022.07.504_b0080 article-title: Signal Quality and Power Spectrum Analysis of Remote Ultra Long-Term Subcutaneous EEG publication-title: Epilepsia doi: 10.1111/epi.16969 – start-page: 10778 year: 2020 ident: 10.1016/j.clinph.2022.07.504_b0075 article-title: EfficientDet: Scalable and Efficient Object Detection – volume: 120 start-page: 1451 issue: 3 year: 2018 ident: 10.1016/j.clinph.2022.07.504_b0090 article-title: High Similarity between EEG from Subcutaneous and Proximate Scalp Electrodes in Patients with Temporal Lobe Epilepsy publication-title: J Neurophysiol doi: 10.1152/jn.00320.2018 – volume: 128 start-page: 1466 issue: 8 year: 2017 ident: 10.1016/j.clinph.2022.07.504_b0040 article-title: Automatic Multimodal Detection for Long-Term Seizure Documentation in Epilepsy publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2017.05.013 – year: 2022 ident: 10.1016/j.clinph.2022.07.504_b0055 article-title: Seizure Detection with Deep Neural Networks for Review of Two-Channel EEG publication-title: Epilepsia doi: 10.1111/epi.17259 – volume: 61 issue: S1 year: 2020 ident: 10.1016/j.clinph.2022.07.504_b0020 article-title: Seizure Detection at Home: Do Devices on the Market Match the Needs of People Living with Epilepsy and Their Caregivers? publication-title: Epilepsia doi: 10.1111/epi.16521 – volume: 61 start-page: 1805 issue: 9 year: 2020 ident: 10.1016/j.clinph.2022.07.504_b0025 article-title: A New Era in Electroencephalographic Monitoring? Subscalp Devices for Ultra–Long-Term Recordings publication-title: Epilepsia doi: 10.1111/epi.16630 – volume: 59 start-page: 14 year: 2018 ident: 10.1016/j.clinph.2022.07.504_b0010 article-title: Seizure Detection Using Scalp-EEG publication-title: Epilepsia doi: 10.1111/epi.14052 – volume: 126 start-page: 1124 issue: 6 year: 2015 ident: 10.1016/j.clinph.2022.07.504_b0045 article-title: Prospective Multi-Center Study of an Automatic Online Seizure Detection System for Epilepsy Monitoring Units publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2014.09.023 – volume: 137 start-page: 145 year: 2017 ident: 10.1016/j.clinph.2022.07.504_b0050 article-title: Does Accounting for Seizure Frequency Variability Increase Clinical Trial Power? publication-title: Epilepsy Res doi: 10.1016/j.eplepsyres.2017.07.013 – volume: 9 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.clinph.2022.07.504_b0005 article-title: Multi-Day Rhythms Modulate Seizure Risk in Epilepsy publication-title: Nat Commun doi: 10.1038/s41467-017-02577-y – reference: 38269339 - Epilepsy Curr. 2023 Aug 29;23(6):351-353 |
SSID | ssj0007042 |
Score | 2.4865692 |
Snippet | •Ultra long-term subcutaneous EEG offers a novel option for the recording of electrographic epileptic seizures in everyday life.•A semi-automatic seizure... Highlights•Ultra long-term subcutaneous EEG offers a novel option for the recording of electrographic epileptic seizures in everyday life. •A semi-automatic... Ultra long-term monitoring with subcutaneous EEG (sqEEG) offers objective outpatient recording of electrographic seizures as an alternative to self-reported... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 86 |
SubjectTerms | Algorithms Electroencephalography - methods Epilepsy Epilepsy - diagnosis Epilepsy, Temporal Lobe - diagnosis Humans Long-term monitoring Neurology Outpatient monitoring Seizure detection Seizures - diagnosis Subcutaneous EEG Temporal Lobe |
Title | Detecting temporal lobe seizures in ultra long-term subcutaneous EEG using algorithm-based data reduction |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1388245722008409 https://www.clinicalkey.es/playcontent/1-s2.0-S1388245722008409 https://dx.doi.org/10.1016/j.clinph.2022.07.504 https://www.ncbi.nlm.nih.gov/pubmed/35987094 https://www.proquest.com/docview/2704869020 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtww0EJUQr1ULfSx5SEjcXU3zsvJEcHCQgUXisTNsh17G7TNrjbJpQe-nZnEoUUFgXpMNCMnM-N5aF6EHCjrXJw5xQKjMhaDS8DyNHPMpIHNuQGF2HW5Xlym0-v4_Ca5WSNHQy8MllV63d_r9E5b-zdjT83xsizHVzwC7zBORIgp_Lhr4sPpdSDT3-7-lHmIoFugg8AMoYf2ua7GC7sPl5iSCEMc4Zn4dW1PmKfn3M_ODJ28J--8_0gP-0_8QNZstUk2LnyGfIuUxxbTAmCQqJ86NadYUEFrW_5uIbamZUXbebNS8LqaMdTMtG61acFLtIu2ppPJKcVq-BlV89liVTY_fzG0dQXFalK6wlmvyM2P5Ppk8uNoyvw6BWYSnjbMgJUKlBJcF8oGYSFU4FJV5LYAn67g2KKrMVqCCCwCnvHImCDXoc5srnLLefSJrFeLyn7BRm8IZIzizqY6FmGmXRw5B3Yv0pnLXDgi0UBFafyscVx5MZdDUdmt7GkvkfYyEBJoPyLsAWvZz9p4AT4ZGCSHPlLQfBKMwQt44ik8W_vrW0suawCW_4jY35iPpPQVZ-4PEiThAmNWpueqDAVOPczBbR-Rz71oPfw9jlcUEIB__e9zt8lbfOrLD3fIerNq7S64UY3e6-7JHnlzePZ9enkPC1QczQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaKFNh2Gbp3um7TgF2FWH7JPhZtunRtclkL9CZIspR6yJwgti_99SNtOeiwDh12tUXIJik-QPITIV-UdS7OnGKBURmLISRgeZo5ZtLA5tyAQeymXOeLdHYdf7tJbvbIyTALg22V3vb3Nr2z1v7JxHNzsinLyXceQXQYJyLEEn6MQ3z7iE4Vj8j-8fnFbLEzyCLo7tDB9QwJhgm6rs0LBxA3WJUIQ0TxTPyNbQ94qL9FoJ0nOjsgz30ISY_7r3xB9mz1kjyZ-yL5K1KeWqwMgE-iHnhqRbGngta2vGshvaZlRdtVs1XwuFoyNM60brVpIVC067am0-lXig3xS6pWy_W2bG5_MnR3BcWGUrpFuFcU6GtyfTa9Opkxf6MCMwlPG2bAUQVKCa4LZYOwECpwqSpyW0BYV3Cc0tWYMEESFoHYeGRMkOtQZzZXueU8ekNG1bqy73DWG3IZo7izqY5FmGkXR86B64t05jIXjkk0cFEaDzeOt16s5NBX9kP2vJfIexkICbwfE7aj2vRwG4-sTwYByWGUFIyfBH_wCJ14iM7W_gTXkssaFss_tOw-5W-K-g97fh40SMIZxsJML1UZCgQ-zCFyH5O3vWrt_h4RFgXk4If_ve8n8nR2Nb-Ul-eLi_fkGb7puxGPyKjZtvYDRFWN_uhPzS-6rB9- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+temporal+lobe+seizures+in+ultra+long-term+subcutaneous+EEG+using+algorithm-based+data+reduction&rft.jtitle=Clinical+neurophysiology&rft.au=Remvig%2C+Line+S.&rft.au=Duun-Henriksen%2C+Jonas&rft.au=F%C3%BCrbass%2C+Franz&rft.au=Hartmann%2C+Manfred&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=1388-2457&rft.volume=142&rft.spage=86&rft.epage=93&rft_id=info:doi/10.1016%2Fj.clinph.2022.07.504&rft.externalDocID=S1388245722008409 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2457&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2457&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2457&client=summon |