A High-Throughput and Uniform Amplification Method for Cell Spheroids

Cell culture is an important life science technology. Compared with the traditional two-dimensional cell culture, three-dimensional cell culture can simulate the natural environment and structure specificity of cell growth in vivo. As such, it has become a research hotspot. The existing three-dimens...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 13; no. 10; p. 1645
Main Authors Liu, Liyuan, Liu, Haixia, Huang, Xiaowen, Liu, Xiaoli, Zheng, Chengyun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 30.09.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cell culture is an important life science technology. Compared with the traditional two-dimensional cell culture, three-dimensional cell culture can simulate the natural environment and structure specificity of cell growth in vivo. As such, it has become a research hotspot. The existing three-dimensional cell culture techniques include the hanging drop method, spinner flask method, etc., making it difficult to ensure uniform morphology of the obtained cell spheroids while performing high-throughput. Here, we report a method for amplifying cell spheroids with the advantages of quickly enlarging the culture scale and obtaining cell spheroids with uniform morphology and a survival rate of over 95%. Technically, it is easy to operate and convenient to change substances. These results indicate that this method has the potential to become a promising approach for cell–cell, cell–stroma, cell–organ mutual interaction research, tissue engineering, and anti-cancer drug screening.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi13101645