Parp-1 deficiency causes an increase of deletion mutations and insertions/ rearrangements in vivo after treatment with an alkylating agent

Accumulated evidence suggests that Parp-1 is involved in DNA repair processes, including base excision repair, single-strand and double-strand break repairs. To understand the precise role of Parp-1 in genomic stability in vivo, we carried out mutation analysis using Parp-1 knockout (Parp-1-/-) mice...

Full description

Saved in:
Bibliographic Details
Published inOncogene Vol. 24; no. 8; pp. 1328 - 1337
Main Authors SHIBATA, Atsushi, KAMADA, Nobuo, MASUMURA, Ken-Ichi, NOHMI, Takehiko, KOBAYASHI, Shizuko, TERAOKA, Hirobumi, NAKAGAMA, Hitoshi, SUGIMURA, Takashi, SUZUKI, Hiroshi, MASUTANI, Mitsuko
Format Journal Article
LanguageEnglish
Published Basingstoke Nature Publishing 17.02.2005
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Accumulated evidence suggests that Parp-1 is involved in DNA repair processes, including base excision repair, single-strand and double-strand break repairs. To understand the precise role of Parp-1 in genomic stability in vivo, we carried out mutation analysis using Parp-1 knockout (Parp-1-/-) mice harboring two marker genes, gpt and red/gam genes. Spontaneous mutant frequencies of both genes in the bone marrows and livers did not differ significantly between Parp-1-/- and Parp-1+/+ mice (P>0.05). After treatment with an alkylating agent, N-nitrosobis(2-hydroxypropyl)amine (BHP), the mutant frequency of the red/gam genes in the liver in Parp-1-/- mice was 1.6-fold higher than that in Parp-1+/+ mice (P<0.05). Categorization of the mutations revealed that deletions larger than 1 kb or those accompanying 1-5 bp insertions at the deletion junctions, as well as rearrangements, were more frequently observed in Parp-1-/- than in Parp-1+/+ mice (P<0.05, respectively). In contrast, mutant frequencies of the gpt gene in the livers of Parp-1(-/-) and Parp-1(+/+) mice after BHP treatment were both elevated and there was no significant difference between the genotypes. These results indicate that Parp-1 is implicated in suppressing deletion mutations in vivo, especially those accompanying small insertions or rearrangements.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1208289