Elevated levels of Secreted-Frizzled-Related-Protein 1 contribute to Alzheimer’s disease pathogenesis
The deposition of aggregated amyloid-β peptides derived from the pro-amyloidogenic processing of the amyloid precurson protein (APP) into characteristic amyloid plaques (APs) is distinctive to Alzheimer’s disease (AD). Alternative APP processing via the metalloprotease ADAM10 prevents amyloid-β form...
Saved in:
Published in | Nature neuroscience Vol. 22; no. 8; pp. 1258 - 1268 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.08.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The deposition of aggregated amyloid-β peptides derived from the pro-amyloidogenic processing of the amyloid precurson protein (APP) into characteristic amyloid plaques (APs) is distinctive to Alzheimer’s disease (AD). Alternative APP processing via the metalloprotease ADAM10 prevents amyloid-β formation. We tested whether downregulation of ADAM10 activity by its secreted endogenous inhibitor secreted-frizzled-related protein 1 (SFRP1) is a common trait of sporadic AD. We demonstrate that SFRP1 is significantly increased in the brain and cerebrospinal fluid of patients with AD, accumulates in APs and binds to amyloid-β, hindering amyloid-β protofibril formation. Sfrp1 overexpression in an AD-like mouse model anticipates the appearance of APs and dystrophic neurites, whereas its genetic inactivation or the infusion of α-SFRP1-neutralizing antibodies favors non-amyloidogenic APP processing. Decreased Sfrp1 function lowers AP accumulation, improves AD-related histopathological traits and prevents long-term potentiation loss and cognitive deficits. Our study unveils SFRP1 as a crucial player in AD pathogenesis and a promising AD therapeutic target.
SFRP1, an ADAM10 inhibitor, is elevated in the brains of patients with Alzheimer’s disease (AD). Antibody-mediated neutralization of its activity stalls brain alterations and cognitive loss in AD-like mice, supporting SFRP1 as a potential target for disease therapy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1097-6256 1546-1726 |
DOI: | 10.1038/s41593-019-0432-1 |