A possible docking and fusion particle for synaptic transmission
Several proteins have been implicated in the rapid (millisecond) calcium-controlled release of transmitters at nerve endings, including soluble N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment protein (alpha-SNAP), the synaptic SNAP receptor (SNARE) and the calcium-binding...
Saved in:
Published in | Nature (London) Vol. 378; no. 6558; pp. 733 - 736 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing
14.12.1995
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Several proteins have been implicated in the rapid (millisecond) calcium-controlled release of transmitters at nerve endings, including soluble N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment protein (alpha-SNAP), the synaptic SNAP receptor (SNARE) and the calcium-binding protein synaptotagmin, which may function as a calcium sensor in exocytosis. A second SNAP isoform (beta-SNAP), which is 83% identical to alpha-SNAP, is highly expressed in brain, but its role is still unclear. Here we show that these proteins assemble cooperatively to form a docking and fusion complex. beta-SNAP (but not alpha-SNAP) binds synaptotagmin and recruits NSF, indicating that the complex may link the process of membrane fusion to calcium entry by attaching a specialized fusion protein (beta-SNAP) to a calcium sensor (synaptotagmin). Polyphosphoinositols that block transmitter release, inositol 1,3,4,5-tetrakisphosphate (InsP4), inositol 1,3,4,5,6-pentakisphosphate (InsP5) and inositol 1,2,3,4,5,6-hexakisphosphate (InsP6), also block the assembly of the particle by preventing beta-SNAP from binding to synaptotagmin. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/378733a0 |