Designed Formation of Double‐Shelled Ni–Fe Layered‐Double‐Hydroxide Nanocages for Efficient Oxygen Evolution Reaction

Delicate design of nanostructures for oxygen‐evolution electrocatalysts is an important strategy for accelerating the reaction kinetics of water splitting. In this work, Ni–Fe layered‐double‐hydroxide (LDH) nanocages with tunable shells are synthesized via a facile one‐pot self‐templating method. Th...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 16; pp. e1906432 - n/a
Main Authors Zhang, Jintao, Yu, Le, Chen, Ye, Lu, Xue Feng, Gao, Shuyan, Lou, Xiong Wen (David)
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Delicate design of nanostructures for oxygen‐evolution electrocatalysts is an important strategy for accelerating the reaction kinetics of water splitting. In this work, Ni–Fe layered‐double‐hydroxide (LDH) nanocages with tunable shells are synthesized via a facile one‐pot self‐templating method. The number of shells can be precisely controlled by regulating the template etching at the interface. Benefiting from the double‐shelled structure with large electroactive surface area and optimized chemical composition, the hierarchical Ni–Fe LDH nanocages exhibit appealing electrocatalytic activity for the oxygen evolution reaction in alkaline electrolyte. Particularly, double‐shelled Ni–Fe LDH nanocages can achieve a current density of 20 mA cm−2 at a low overpotential of 246 mV with excellent stability. Hierarchical Ni–Fe layered‐double‐hy‐droxide (LDH) nanocages with different shells are designed and synthesized via a one‐pot self‐templating method. Benefiting from the optimized architecture and improved reaction kinetics, the double‐shelled Ni–Fe LDH nanocages demonstrate appealing electrocatalytic activity for the oxygen evolution reaction in an alkaline medium.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.201906432