Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels
Three‐dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which cros...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 35; pp. e2002931 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three‐dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue‐like constructs in future.
When designing a 3D bioprinting system, the selection of an appropriate crosslinking method is required, to enable successful printability and to ensure cytocompatibility, stability, and sustainability of the resulting tissue constructs. The present work systematically summarizes recent advances made in the development of crosslinking methods and their application in 3D bioprinting. |
---|---|
AbstractList | Three‐dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue‐like constructs in future.
When designing a 3D bioprinting system, the selection of an appropriate crosslinking method is required, to enable successful printability and to ensure cytocompatibility, stability, and sustainability of the resulting tissue constructs. The present work systematically summarizes recent advances made in the development of crosslinking methods and their application in 3D bioprinting. Three-dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue-like constructs in future.Three-dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue-like constructs in future. Three‐dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue‐like constructs in future. |
Author | Ashammakhi, Nureddin GhavamiNejad, Amin Wu, Xiao Yu Khademhosseini, Ali |
Author_xml | – sequence: 1 givenname: Amin orcidid: 0000-0002-0712-5653 surname: GhavamiNejad fullname: GhavamiNejad, Amin email: amin.ghavaminejad@utoronto.ca organization: University of Toronto – sequence: 2 givenname: Nureddin surname: Ashammakhi fullname: Ashammakhi, Nureddin organization: University of California‐Los Angeles – sequence: 3 givenname: Xiao Yu surname: Wu fullname: Wu, Xiao Yu organization: University of Toronto – sequence: 4 givenname: Ali surname: Khademhosseini fullname: Khademhosseini, Ali email: khademh@terasaki.org organization: Terasaki Institute for Biomedical Innovation (TIBI) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32734720$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYNU7EO3LmXAjZupec2ks6z1UaGiUF2HNJMpqZlJTabI_Hsz9CEUxFVuuN-53HtOH3QqWykALhEcIgjxrS-NGWKIQ50RdAJ6KEUkTkc46xxqBLug7_0KQoIwZWegSzAjlGHYA-OJs94bXX3qahnNaydqtdTKR4V1EbmP7rRdO13VbdcW0Zs1TamcltG0yZ1dKuPPwWkhjFcXu3cAPh4f3ifTePb69DwZz2KZhD1iyiRcsLTIqEIQF5RikajwEwUVOUwTKWGqEpZko5SS0SInDKdKFBLnCyLJiJIBuNnOXTv7tVG-5qX2UhkjKmU3nmOKMxbOSlr0-ghd2Y2rwnaBIlmSJcGJQF3tqM2iVDkPd5bCNXxvTgDoFpCtR04VXOpa1NpWwSZtOIK8zYC3GfBDBkE2PJLtJ_8pyLaCb21U8w_N5y-z2a_2B6QHl-I |
CitedBy_id | crossref_primary_10_1016_j_addr_2021_04_001 crossref_primary_10_1039_D4TB00310A crossref_primary_10_1039_D4TB00386A crossref_primary_10_1016_j_matpr_2022_09_010 crossref_primary_10_1007_s00289_022_04580_w crossref_primary_10_1021_acsbiomaterials_4c01764 crossref_primary_10_1088_1758_5090_ad35eb crossref_primary_10_1002_mabi_202200434 crossref_primary_10_1088_1758_5090_aca5b8 crossref_primary_10_1126_sciadv_ade7880 crossref_primary_10_1088_1758_5090_ac0b9a crossref_primary_10_1007_s00289_024_05324_8 crossref_primary_10_1016_j_ijpharm_2024_123937 crossref_primary_10_1021_acsbiomaterials_2c00370 crossref_primary_10_1021_jacs_4c02317 crossref_primary_10_3390_gels10020153 crossref_primary_10_3390_ma17051218 crossref_primary_10_3390_polym14153023 crossref_primary_10_3390_polym15102323 crossref_primary_10_1016_j_ijbiomac_2024_130194 crossref_primary_10_1088_1758_5090_acd6bf crossref_primary_10_1038_s41467_024_45938_0 crossref_primary_10_3389_frsfm_2024_1354122 crossref_primary_10_3390_ijms23073432 crossref_primary_10_1021_acs_biomac_1c01105 crossref_primary_10_1021_acs_molpharmaceut_2c00038 crossref_primary_10_1557_s43577_023_00546_z crossref_primary_10_1002_admi_202200779 crossref_primary_10_1016_j_ijbiomac_2023_125201 crossref_primary_10_14326_abe_13_293 crossref_primary_10_1088_1758_5090_adb999 crossref_primary_10_3390_biom12020216 crossref_primary_10_3390_ma16237461 crossref_primary_10_1002_mabi_202300156 crossref_primary_10_1039_D1TB02230J crossref_primary_10_1002_adhm_202101439 crossref_primary_10_1007_s42242_023_00236_4 crossref_primary_10_1021_acs_iecr_2c02779 crossref_primary_10_1039_D2BM01036D crossref_primary_10_1002_admt_202400119 crossref_primary_10_1088_1758_5090_ad7906 crossref_primary_10_1021_acsomega_3c08112 crossref_primary_10_1002_adbi_202300056 crossref_primary_10_3390_designs8040083 crossref_primary_10_1002_marc_202300214 crossref_primary_10_2478_abm_2023_0063 crossref_primary_10_1039_D3MH00516J crossref_primary_10_3390_gels9020129 crossref_primary_10_1021_acsami_2c20098 crossref_primary_10_1088_2515_7639_acada1 crossref_primary_10_1039_D2CS01011A crossref_primary_10_3390_molecules27030882 crossref_primary_10_1111_cpr_13453 crossref_primary_10_1063_5_0031475 crossref_primary_10_1088_2516_1091_ac8259 crossref_primary_10_1016_j_matt_2021_10_018 crossref_primary_10_1021_acsami_3c02961 crossref_primary_10_1002_jbm_a_37650 crossref_primary_10_1002_mabi_202200333 crossref_primary_10_1016_j_ijbiomac_2024_134528 crossref_primary_10_3390_polym14061211 crossref_primary_10_1007_s00449_023_02965_3 crossref_primary_10_1039_D1MH01632F crossref_primary_10_1021_acsnano_4c00543 crossref_primary_10_1039_D3TB03032F crossref_primary_10_1039_D4BM00550C crossref_primary_10_1016_j_biomaterials_2022_121531 crossref_primary_10_1021_acs_biomac_3c00887 crossref_primary_10_1021_acs_chemrev_1c00531 crossref_primary_10_3390_gels11020110 crossref_primary_10_1007_s10911_024_09557_1 crossref_primary_10_1007_s42242_021_00169_w crossref_primary_10_3390_molecules26092817 crossref_primary_10_1115_1_4053198 crossref_primary_10_3390_pharmaceutics13091444 crossref_primary_10_1016_j_ijbiomac_2023_127882 crossref_primary_10_1002_dvdy_385 crossref_primary_10_1021_acsbiomaterials_3c01569 crossref_primary_10_1002_marc_202100445 crossref_primary_10_1002_marc_202200272 crossref_primary_10_1089_ten_teb_2021_0012 crossref_primary_10_1515_rams_2023_0180 crossref_primary_10_1002_adfm_202010609 crossref_primary_10_1007_s44174_024_00171_7 crossref_primary_10_3390_gels10060366 crossref_primary_10_1038_s43586_021_00073_8 crossref_primary_10_1063_5_0123058 crossref_primary_10_3390_jmmp5030091 crossref_primary_10_3390_polym15153223 crossref_primary_10_1088_1758_5090_ac14ca crossref_primary_10_3390_md19120708 crossref_primary_10_1016_j_ijbiomac_2023_127410 crossref_primary_10_1039_D1BM00695A crossref_primary_10_3390_gels10020114 crossref_primary_10_3390_jmmp6020045 crossref_primary_10_1021_acsami_4c03209 crossref_primary_10_1557_s43577_022_00348_9 crossref_primary_10_1002_adfm_202301209 crossref_primary_10_1002_jctb_7389 crossref_primary_10_1002_adfm_202404962 crossref_primary_10_1088_1748_605X_ada59d crossref_primary_10_1002_mabi_202300484 crossref_primary_10_3390_ijms241310620 crossref_primary_10_1016_j_carbpol_2023_121313 crossref_primary_10_3390_polym14091844 crossref_primary_10_1039_D0QM01099E crossref_primary_10_3389_fmech_2020_568726 crossref_primary_10_3390_biomedicines11061742 crossref_primary_10_3390_pharmaceutics16111388 crossref_primary_10_1021_jacsau_4c00677 crossref_primary_10_1021_acs_chemrev_0c01200 crossref_primary_10_1088_1758_5090_ad17cf crossref_primary_10_3390_gels9070547 crossref_primary_10_1088_1748_605X_ad4df7 crossref_primary_10_1002_adfm_202313942 crossref_primary_10_1021_acs_biomac_4c00671 crossref_primary_10_1039_D2TB02052A crossref_primary_10_1039_D3BM01792C crossref_primary_10_1039_D2BM00709F crossref_primary_10_1002_adhm_202203268 crossref_primary_10_1039_D2TB02040H crossref_primary_10_20517_ss_2024_59 crossref_primary_10_1021_acsbiomaterials_3c00898 crossref_primary_10_3390_gels9110890 crossref_primary_10_1088_1748_605X_ad651f crossref_primary_10_1002_smtd_202400076 crossref_primary_10_3390_polym13142222 crossref_primary_10_1016_j_pmatsci_2023_101072 crossref_primary_10_1021_acsbiomaterials_0c01749 crossref_primary_10_1088_1758_5090_abe7ab crossref_primary_10_1063_5_0227692 crossref_primary_10_1002_marc_202300661 crossref_primary_10_1002_mame_202100871 crossref_primary_10_1002_adhm_202301265 crossref_primary_10_34172_apb_2022_069 crossref_primary_10_1007_s42242_021_00153_4 crossref_primary_10_1007_s40883_024_00381_x crossref_primary_10_1088_1758_5090_ac9019 crossref_primary_10_1002_admt_202401097 crossref_primary_10_1038_s41467_024_48023_8 crossref_primary_10_1021_acs_biomac_4c00547 crossref_primary_10_1002_adhm_202401603 crossref_primary_10_1088_1748_605X_ac1ab4 crossref_primary_10_1016_j_procir_2024_08_017 crossref_primary_10_1039_D4BM01304B crossref_primary_10_3390_bioengineering11040363 crossref_primary_10_1016_j_conbuildmat_2023_132416 crossref_primary_10_1021_acs_biomac_3c00168 crossref_primary_10_1002_advs_202404580 crossref_primary_10_1088_1758_5090_acab36 crossref_primary_10_1088_1758_5090_acab35 crossref_primary_10_1063_5_0023206 crossref_primary_10_1177_20417314241282476 crossref_primary_10_3389_pore_2023_1610996 crossref_primary_10_1080_09205063_2024_2321636 crossref_primary_10_1002_smll_202104996 crossref_primary_10_1021_acsabm_3c00806 crossref_primary_10_1021_acsabm_1c00219 crossref_primary_10_1115_1_4054086 crossref_primary_10_3390_polym15040898 crossref_primary_10_3390_bioengineering8100144 crossref_primary_10_1016_j_matdes_2023_112362 crossref_primary_10_1039_D0BM01428A crossref_primary_10_1088_1758_5090_ad9b50 crossref_primary_10_1002_adhm_202400643 crossref_primary_10_1063_5_0032777 crossref_primary_10_1016_j_optlastec_2021_107344 crossref_primary_10_1080_09205063_2024_2449294 crossref_primary_10_1002_adhm_202403114 crossref_primary_10_1002_mabi_202000179 crossref_primary_10_1002_pat_6164 crossref_primary_10_1016_j_ijbiomac_2021_08_140 crossref_primary_10_3390_gels7040194 crossref_primary_10_1002_adma_202501994 crossref_primary_10_1039_D4SM00712C crossref_primary_10_1039_D2ME00171C crossref_primary_10_1016_j_mattod_2022_01_001 crossref_primary_10_1016_j_eurpolymj_2021_110807 crossref_primary_10_1016_j_bprint_2022_e00214 crossref_primary_10_3390_pharmaceutics13091373 crossref_primary_10_1002_admi_202100670 crossref_primary_10_1002_slct_202203681 crossref_primary_10_1021_jacsau_3c00281 crossref_primary_10_1002_adma_202406825 crossref_primary_10_1016_j_trac_2022_116672 |
Cites_doi | 10.1038/s41598-018-26407-3 10.1088/2057-1976/aa70f0 10.1021/acsbiomaterials.7b00601 10.1021/acs.chemrev.5b00303 10.1038/s41467-018-03759-y 10.1021/acsapm.8b00165 10.1016/j.actbio.2018.02.035 10.1371/journal.pone.0195820 10.1016/j.biomaterials.2016.09.003 10.1039/C7PY00826K 10.1016/j.matlet.2018.03.204 10.1007/s10439-016-1653-z 10.1002/jbm.a.36179 10.1088/1758-5090/ab15a9 10.1002/smll.201700684 10.1039/C8TC03389G 10.18063/IJB.2017.02.003 10.1002/bit.24488 10.1016/j.biomaterials.2015.08.028 10.1016/j.eurpolymj.2018.02.023 10.1088/1758-5090/aa53bd 10.1021/bm200178w 10.1088/1758-5090/aacd30 10.1088/1361-6528/aaafa1 10.1016/j.actbio.2012.09.039 10.1038/s41598-017-09201-5 10.1089/tea.2007.0173 10.1002/biot.201400305 10.1016/j.carbpol.2015.05.021 10.1073/pnas.1521342113 10.1016/j.biomaterials.2018.01.057 10.1021/acsbiomaterials.6b00432 10.1016/j.actbio.2017.08.005 10.1016/j.actbio.2014.09.033 10.1115/1.3128729 10.1039/C6NR02299E 10.1111/j.1440-1797.2012.01615.x 10.1021/acs.chemrev.7b00074 10.1002/adhm.201901667 10.1021/bm3011352 10.1039/C4MT00057A 10.1039/C7CS00718C 10.1021/bm1002398 10.1039/C8BM00689J 10.1038/srep24474 10.1016/j.biomaterials.2018.04.034 10.1016/j.jiec.2017.12.032 10.1007/s10544-019-0372-2 10.1016/j.msec.2018.04.092 10.1021/acsami.8b01294 10.1002/advs.201700550 10.1016/j.biomaterials.2016.07.038 10.1039/c3bm00012e 10.1088/1758-5090/8/3/035002 10.1002/adfm.201400274 10.1002/marc.201400501 10.1002/adma.201806899 10.1016/j.ccc.2008.12.001 10.1088/1758-5082/6/3/035004 10.1016/j.biomaterials.2011.10.067 10.1016/j.mtbio.2019.100008 10.1002/adma.201305506 10.1088/1758-5090/aa857c 10.1016/j.actbio.2018.12.008 10.1021/acsami.5b10471 10.1115/1.4024575 10.1002/bip.23080 10.1002/jbm.a.36323 10.1021/acs.macromol.7b01114 10.1002/pola.20366 10.1016/j.biomaterials.2017.03.026 10.1002/adhm.201701249 10.1089/ten.tec.2017.0346 10.1371/journal.pone.0216776 10.1021/acsami.7b16059 10.3390/ma7043106 10.1038/s41598-017-05699-x 10.1021/acs.biomac.8b01589 10.1038/srep27226 10.1088/1758-5090/aa9b4e 10.1002/advs.201600058 10.1371/journal.pone.0189428 10.1021/bm400610b 10.1016/j.trsl.2019.08.010 10.1016/j.jmbbm.2017.09.031 10.1021/acsami.6b11669 10.1038/nbt.3413 10.1088/1758-5082/5/1/015003 10.1089/ten.tea.2011.0543 10.1073/pnas.1808645116 10.1088/1758-5090/ab0692 10.1002/adfm.201505329 10.1016/j.progpolymsci.2019.05.001 10.1002/term.1745 10.1039/C7BM00765E 10.1021/bm900036s 10.1002/adma.201604983 10.1088/1758-5090/8/4/045005 10.1088/1758-5090/aa8cb7 10.1039/C6TB01501H 10.1021/acsbiomaterials.6b00149 10.1038/s41598-017-16668-9 10.1002/anie.201411383 10.1021/mp400573g 10.1002/adhm.201600182 10.1088/1758-5090/aa8dd8 10.1088/1758-5090/8/1/014101 10.1002/adhm.201600636 10.1002/adfm.201700798 10.1016/j.actbio.2018.03.021 10.1088/1758-5090/7/4/044105 10.1002/adhm.201600505 10.1002/adhm.201601122 10.1016/j.actbio.2015.12.039 10.1371/journal.pone.0112497 10.1016/j.actbio.2016.01.013 10.1002/adma.201703404 10.18063/IJB.2016.01.009 10.1002/mabi.201900098 10.1016/j.biomaterials.2017.01.042 10.1016/j.exer.2018.05.010 10.1088/1758-5090/aad36d 10.1038/s41598-018-28715-0 10.1002/adma.201503310 10.3390/polym11030569 10.1016/j.gendis.2017.10.002 10.1089/ten.tec.2011.0060 10.1021/acsami.9b03442 10.1002/adfm.201503423 10.1039/c3sm27560d 10.1038/srep04457 10.1088/1758-5090/aac902 10.1080/09205063.2018.1433420 10.3727/000000006783982340 10.1002/adfm.201703716 10.1089/ten.tec.2017.0222 10.1021/acsbiomaterials.8b00691 10.1002/jbm.a.36117 10.1002/jbm.a.34420 10.1002/jbm.a.36184 10.1002/adhm.201601451 10.1016/j.actbio.2013.10.016 10.1016/j.actbio.2012.01.029 10.1088/1758-5082/6/2/024105 10.1002/adfm.201605352 10.1016/j.tibtech.2019.12.020 10.1039/C4TB01727G 10.3390/molecules24244514 10.1002/adhm.201800992 10.1002/term.2058 10.1021/acs.biomac.5b00363 10.1002/adhm.201701021 10.1088/1758-5090/8/3/035020 10.1088/1758-5090/8/3/035003 10.1002/adma.201405076 10.1002/adhm.201801501 10.1002/biot.201800148 10.6023/A14100721 10.1016/S0142-9612(02)00274-0 10.1002/adhm.201700015 10.1021/acs.biomac.7b01827 10.1126/sciadv.1500758 10.1088/1758-5090/7/4/045011 10.3390/ma6041285 10.1016/j.biomaterials.2010.11.008 10.1002/mabi.201200471 10.1002/app.42458 10.1038/s41598-017-17286-1 10.1089/ten.teb.2016.0200 10.1002/adfm.201401502 10.1021/acsbiomaterials.6b00158 10.1088/1758-5090/aacb42 10.1021/acsbiomaterials.9b00047 10.1021/acsbiomaterials.7b00224 10.1002/bit.24455 10.1126/science.8493529 10.1002/term.2602 10.1021/acsnano.7b01008 10.1002/adhm.201701026 10.3390/ma11040579 10.1016/j.msec.2016.10.069 10.1039/C4LC00030G 10.1002/adma.201804041 10.1088/1758-5090/aa7e96 10.1088/1758-5090/aa7279 10.1039/C7CC08225H 10.1002/marc.201700534 10.1088/1758-5090/8/3/035004 10.1002/marc.201600695 10.1016/j.biomaterials.2009.08.055 10.1021/acsami.7b18197 10.1039/C7BM01015J 10.1021/acsbiomaterials.6b00288 10.1021/bm060010d 10.1002/adhm.201700255 10.1088/1758-5090/8/2/025016 10.1002/adfm.201700318 10.1039/C8BM01246F 10.1039/C3CP55092C 10.1038/nbt.2958 10.1080/00914037.2016.1201830 10.1002/adma.201904209 10.1002/adhm.201801048 10.1088/1758-5082/5/4/045010 10.1088/1758-5090/7/3/035006 10.1177/0391398819856024 10.1016/j.carbpol.2018.06.081 10.1088/1758-5090/7/4/045009 10.1021/acsami.6b10673 10.1021/acs.biomac.6b00039 10.1002/adhm.201800050 10.1088/1758-5090/aac00c 10.1016/j.jneumeth.2013.04.009 10.1007/s11706-013-0211-y 10.1007/978-981-13-0950-2_2 10.1016/j.carbpol.2018.07.001 10.1088/1758-5082/3/3/034113 10.1016/j.addr.2018.07.004 10.3390/nano8050296 10.1088/1748-605X/aaa5b6 10.1089/ten.tec.2011.0382 10.1021/acsami.7b19808 10.1021/acs.biomac.5b00188 10.1038/s41598-018-20385-2 10.1021/acsami.7b19730 10.1039/c3sm27389j 10.1002/adhm.201801631 10.1002/adma.201800242 10.1007/s00397-015-0837-z 10.1088/1758-5090/8/4/045002 10.1039/C9LC00117D 10.1021/acsbiomaterials.7b00101 10.1088/1758-5090/7/4/044102 10.3390/polym10060664 10.1039/C5LC90069G 10.1002/adma.201703443 10.1021/acsbiomaterials.6b00203 10.1007/s00170-019-03438-2 10.1371/journal.pone.0177628 10.1007/s42242-018-0004-3 10.1002/adhm.201500677 10.1088/1758-5090/aa7b1d 10.1039/c3tb21093f 10.1002/adhm.201801512 10.1371/journal.pone.0163902 10.1016/j.biotechadv.2015.12.011 10.1016/j.biomaterials.2015.07.022 10.1016/j.actbio.2017.10.047 10.1038/s41598-017-04691-9 10.1088/1758-5090/7/4/045012 10.1088/1758-5090/ab15cb 10.1038/srep29977 10.1021/acsami.7b13602 10.1038/s41591-018-0296-z 10.1088/1758-5082/6/3/035001 10.1021/acsbiomaterials.6b00031 10.1126/science.aav9750 10.1016/j.biomaterials.2010.06.035 10.1080/17425247.2017.1360865 10.1039/C9NR01687B 10.1002/smll.201805530 10.3390/ma11030454 10.1021/acs.langmuir.7b02540 10.1021/acs.biomac.8b00696 10.1002/adhm.201801181 10.3390/polym10050555 10.1089/ten.tec.2015.0307 10.1016/B978-1-4557-2852-7.00006-8 10.1021/acsbiomaterials.6b00226 10.1007/s00397-015-0906-3 10.1002/term.1682 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202002931 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 32734720 10_1002_smll_202002931 SMLL202002931 |
Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: EB021857; AR066193; AR057837; CA214411; HL137193; EB024403; EB023052; EB022403; R01EB021857 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: RGPIN‐2019‐07204 – fundername: NIAMS NIH HHS grantid: R01 AR057837 – fundername: NCI NIH HHS grantid: U01 CA214411 – fundername: NIAMS NIH HHS grantid: R01 AR066193 – fundername: NIAMS NIH HHS grantid: R01 AR072613 – fundername: NIBIB NIH HHS grantid: R01 EB021857 – fundername: NHLBI NIH HHS grantid: R01 HL137193 – fundername: NIBIB NIH HHS grantid: R01 EB023052 – fundername: NIBIB NIH HHS grantid: R01 EB024403 – fundername: NIBIB NIH HHS grantid: R21 EB022403 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c5161-47c0b76f94e102f442a5ef94af4ad065cc06e575986438bd3726eafc2db3c3843 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 08:23:05 EDT 2025 Fri Jul 25 12:09:54 EDT 2025 Thu Apr 03 06:58:25 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Tue Jul 01 02:10:54 EDT 2025 Wed Jan 22 16:34:35 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | bioinks tissue engineering 3D bioprinting crosslinking strategies hydrogel-cell interactions |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5161-47c0b76f94e102f442a5ef94af4ad065cc06e575986438bd3726eafc2db3c3843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0712-5653 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7754762 |
PMID | 32734720 |
PQID | 2439595031 |
PQPubID | 1046358 |
PageCount | 30 |
ParticipantIDs | proquest_miscellaneous_2429773454 proquest_journals_2439595031 pubmed_primary_32734720 crossref_citationtrail_10_1002_smll_202002931 crossref_primary_10_1002_smll_202002931 wiley_primary_10_1002_smll_202002931_SMLL202002931 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016 2019; 113 216 2010; 11 2013; 1 2019; 95 2018; 162 2015; 71 2019; 11 2015; 73 2019; 14 2016; 32 2014; 26 2019; 19 2014; 24 2012; 18 2012; 17 2013; 7 2012; 13 2013; 5 2013; 6 2013; 9 2016; 34 2016; 33 2018; 7 2018; 6 2018; 9 2018; 8 2018; 39 2018; 171 2018; 5 2009; 10 2017; 71 2018; 173 2019; 20 2018; 1 2019; 21 2019; 24 2015; 131 2019; 25 2014; 16 2014; 14 2018; 30 2018; 34 2014; 11 2014; 10 2019; 8 2019; 7 2017; 61 2018; 29 2010; 31 2004; 42 2018; 28 2019; 5 2019; 31 2018; 106 2018; 223 2018; 101 2015; 54 2020; 38 2019; 105 2014 2018 2019; 32 132 31 2018; 109 2011; 3 2012; 33 2012; 109 2018; 24 2016; 11 2016; 4 2015; 67 2016; 5 2017; 50 2018; 19 2017; 53 2018; 199 2016; 6 2018; 198 2016 2018 2017; 116 1078 4 2016; 2 2016; 3 2013; 217 2019; 48 2003; 24 2018; 90 2019 2016; 11 17 2018; 12 2017 2018; 9 10 2018; 11 2016; 28 2018; 10 2016; 26 2016; 8 2018; 15 2017 2017; 13 131 2018; 13 2016; 22 1993 2006; 260 15 2017; 6 2017; 7 2017; 8 2015; 36 2017; 3 2017; 45 2016; 106 2011; 12 2013; 101A 2017; 9 2019; 364 2018; 131 2019 2018; 1 6 1966; S 2018 2019; 13 42 2014; 4 2013; 14 2017 2015; 6 132 2013; 13 2017; 38 2020; 9 2019; 116 2016; 110 2018; 71 2014; 9 2018; 77 2017; 124 2014; 7 2014; 6 2015; 1 2009; 25 2015; 15 2015; 16 2015; 3 2017; 27 2015; 11 2017; 23 2006; 7 2008; 14 2017; 29 2018; 61 2009; 131 2015; 9 2018; 65 2015; 7 2007; 56 2016; 55 2015; 25 2009; 30 2015; 27 2019; 84 2016 2017 2019 2019; 34 117 1 15 2020 2017; 11 2017; 13 2017; 12 2013 2017 2011 2013; 9 66 32 6 2019 2018 2017; 8 11 2013; 135 2017; 105 2012; 8 e_1_2_8_241_2 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_249_1 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_1_2 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_230_1 e_1_2_8_253_1 Smith K. C. (e_1_2_8_159_1) 1966 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_238_1 e_1_2_8_215_2 e_1_2_8_215_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_166_2 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_254_1 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_14_3 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_243_1 e_1_2_8_220_1 e_1_2_8_228_1 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_217_1 e_1_2_8_255_1 Jin Y. F. (e_1_2_8_242_1) 2017; 9 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_2 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_70_2 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_256_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_245_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_257_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 e_1_2_8_223_1 Khoon J. H. G. (e_1_2_8_34_1) 2020 e_1_2_8_246_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 Costa J. B. (e_1_2_8_23_1) 2017; 6 e_1_2_8_67_1 e_1_2_8_137_2 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 Thayer P. S. (e_1_2_8_193_1) 2018; 131 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_33_4 e_1_2_8_33_3 e_1_2_8_250_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_258_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 Talebian A. (e_1_2_8_152_1) 2007; 56 e_1_2_8_33_2 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_251_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_126_2 e_1_2_8_149_1 Yang W. G. (e_1_2_8_241_1) 2017; 13 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_154_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_4_3 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_139_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_35_2 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 Wang Q. S. (e_1_2_8_84_1) 2019 e_1_2_8_127_1 e_1_2_8_50_4 e_1_2_8_12_1 e_1_2_8_50_2 e_1_2_8_50_3 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 15 start-page: 3111 year: 2015 publication-title: Lab Chip – volume: 24 start-page: 165 year: 2003 publication-title: Biomaterials – volume: 5 start-page: 2174 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 14 year: 2019 publication-title: PLoS One – volume: 6 start-page: 915 year: 2018 publication-title: Biomater. Sci. – volume: 12 year: 2017 publication-title: PLoS One – volume: 23 start-page: S9 year: 2017 publication-title: Tissue Eng., Part A – volume: 6 year: 2017 publication-title: Adv. Healthcare Mater. – volume: 7 start-page: 3106 year: 2014 publication-title: Materials – volume: 71 start-page: 486 year: 2018 publication-title: Acta Biomater. – volume: 6 year: 2014 publication-title: Biofabrication – volume: 11 year: 2016 publication-title: PLoS One – volume: 38 start-page: 584 year: 2020 publication-title: Trends Biotechnol. – volume: 10 start-page: 9969 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 3 start-page: 3534 year: 2017 publication-title: ACS Biomater. Sci. Eng. – volume: 8 year: 2019 publication-title: Adv. Healthcare Mater. – volume: 26 start-page: 3612 year: 2016 publication-title: Adv. Funct. Mater. – volume: 199 start-page: 58 year: 2018 publication-title: Carbohydr. Polym. – volume: 6 start-page: 1358 year: 2014 publication-title: Metallomics – volume: 11 start-page: 1574 year: 2017 publication-title: J. Tissue Eng. Regener. Med. – volume: 73 start-page: 267 year: 2015 publication-title: Acta Chim. Sin. – volume: 9 start-page: 1286 year: 2015 publication-title: J. Tissue Eng. Regener. Med. – volume: 3 year: 2011 publication-title: Biofabrication – volume: 2 start-page: 1059 year: 2016 publication-title: ACS Biomater. Sci. Eng. – volume: 55 start-page: 163 year: 2016 publication-title: Rheol. Acta – volume: 25 start-page: 1352 year: 2015 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 3124 year: 2014 publication-title: Adv. Mater. – volume: 29 start-page: 1126 year: 2018 publication-title: J. Biomater. Sci., Polym. Ed. – volume: 36 start-page: 447 year: 2015 publication-title: Macromol. Rapid Commun. – volume: 1 start-page: 6619 year: 2013 publication-title: J. Mater. Chem. B – volume: 10 start-page: 9957 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 65 start-page: 174 year: 2018 publication-title: Acta Biomater. – volume: 16 start-page: 1489 year: 2015 publication-title: Biomacromolecules – volume: 5 start-page: 2488 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 4 start-page: 6694 year: 2016 publication-title: J. Mater. Chem. B – volume: 7 start-page: 8624 year: 2017 publication-title: Sci Rep‐Uk – start-page: 12 year: 2019 publication-title: Materials – volume: 38 year: 2017 publication-title: Macromol. Rapid Commun. – volume: 105 start-page: 4599 year: 2019 publication-title: Int. J. Adv. Manuf. Technol. – volume: 9 10 year: 2017 2018 publication-title: Biofabrication Biofabrication – volume: 116 start-page: 7738 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 year: 2017 publication-title: Biofabrication – volume: 32 start-page: 170 year: 2016 publication-title: Acta Biomater. – volume: 54 start-page: 501 year: 2015 publication-title: Rheol. Acta – volume: 13 year: 2017 publication-title: Small – volume: 11 year: 2019 publication-title: Biofabrication – volume: 15 start-page: 77 year: 2018 publication-title: Expert Opinion on Drug Delivery – volume: 109 start-page: 1855 year: 2012 publication-title: Biotechnol. Bioeng. – volume: 9 start-page: 1620 year: 2018 publication-title: Nat. Commun. – volume: 34 start-page: 917 year: 2018 publication-title: Langmuir – volume: 12 start-page: 1831 year: 2011 publication-title: Biomacromolecules – volume: 2 start-page: 53 year: 2016 publication-title: Int J. Bioprinting – volume: 5 start-page: 1150 year: 2019 publication-title: ACS Biomater. Sci. Eng. – volume: 25 start-page: 7406 year: 2015 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 162 year: 2015 publication-title: Acta Biomater. – volume: 1 start-page: 763 year: 2013 publication-title: Biomater. Sci. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 11 start-page: 454 year: 2018 publication-title: Materials – volume: 7 start-page: 843 year: 2019 publication-title: Biomater. Sci. – volume: 13 start-page: 2997 year: 2012 publication-title: Biomacromolecules – year: 2020 publication-title: Chem. Rev. – volume: 67 start-page: 264 year: 2015 publication-title: Biomaterials – volume: 101A start-page: 1255 year: 2013 publication-title: J. Biomed. Mater. Res., Part A – volume: 95 start-page: 32 year: 2019 publication-title: Prog. Polym. Sci. – volume: 124 start-page: 106 year: 2017 publication-title: Biomaterials – volume: 30 start-page: 6702 year: 2009 publication-title: Biomaterials – volume: 32 132 31 start-page: 773 296 year: 2014 2018 2019 publication-title: Nat. Biotechnol. Adv. Drug Delivery Rev. Adv. Mater. – volume: 9 66 32 6 start-page: 3283 299 1838 1285 year: 2013 2017 2011 2013 publication-title: Soft Matter Int. J. Polym. Mater. Polym. Biomater. Biomaterials Materials – volume: 8 start-page: 3115 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 1800 year: 2016 publication-title: ACS Biomater. Sci. Eng. – volume: 7 start-page: 4575 year: 2017 publication-title: Sci. Rep. – volume: 34 117 1 15 start-page: 422 year: 2016 2017 2019 2019 publication-title: Biotechnol. Adv. Chem. Rev. Mater. Today Bio Small – volume: 3 year: 2017 publication-title: Biomed. Phys. Eng. Express – volume: 2 start-page: 1817 year: 2016 publication-title: ACS Biomater. Sci. Eng. – volume: 10 start-page: 8993 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 569 year: 2019 publication-title: Polymers – volume: 2 start-page: 1752 year: 2016 publication-title: ACS Biomater. Sci. Eng. – volume: 9 start-page: 1304 year: 2014 publication-title: Biotechnol. J. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 34 start-page: 312 year: 2016 publication-title: Nat. Biotechnol. – volume: 17 start-page: 514 year: 2012 publication-title: Nephrology – volume: 10 year: 2018 publication-title: Biofabrication – volume: 22 start-page: 173 year: 2016 publication-title: Tissue Eng., Part C – volume: 33 start-page: 1281 year: 2012 publication-title: Biomaterials – volume: 116 1078 4 start-page: 1496 15 185 year: 2016 2018 2017 publication-title: Chem. Rev. Adv. Exp. Med. Biol. Genes Dis. – volume: 113 216 start-page: 3179 57 year: 2016 2019 publication-title: Proc. Natl. Acad. Sci. USA Transl. Res. – volume: 223 start-page: 219 year: 2018 publication-title: Mater. Lett. – volume: 45 start-page: 132 year: 2017 publication-title: Ann. Biomed. Eng. – volume: 7 start-page: 1471 year: 2006 publication-title: Biomacromolecules – volume: 14 start-page: 413 year: 2008 publication-title: Tissue Eng., Part A – volume: 13 year: 2018 publication-title: Biomed Mater – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 269 year: 2013 publication-title: Frontiers of Materials Science – volume: 1 6 start-page: 593 year: 2019 2018 publication-title: Acs Appl. Polym. Mater. J Mater Chem C – volume: 18 start-page: 62 year: 2012 publication-title: Tissue Eng., Part C – volume: 71 start-page: 678 year: 2017 publication-title: Mater. Sci. Eng., C – volume: 31 start-page: 7494 year: 2010 publication-title: Biomaterials – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 61 start-page: 340 year: 2018 publication-title: J. Ind. Eng. Chem. – volume: 173 start-page: 188 year: 2018 publication-title: Exp. Eye Res. – volume: 13 start-page: 551 year: 2013 publication-title: Macromol. Biosci. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 18 start-page: 1304 year: 2012 publication-title: Tissue Eng., Part A – volume: 105 start-page: 3231 year: 2017 publication-title: J. Biomed. Mater. Res., Part A – volume: 131 start-page: 57 year: 2015 publication-title: Carbohydr. Polym. – volume: 11 start-page: 1796 year: 2010 publication-title: Biomacromolecules – volume: 48 start-page: 4049 year: 2019 publication-title: Chem. Soc. Rev. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 135 year: 2013 publication-title: J. Biomech. Eng. – volume: 6 start-page: 2578 year: 2018 publication-title: Biomater. Sci. – volume: 9 year: 2020 publication-title: Adv. Healthcare Mater. – volume: 16 start-page: 8675 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 19 start-page: 1644 year: 2019 publication-title: Lab Chip – volume: 109 start-page: 2357 year: 2012 publication-title: Biotechnol. Bioeng. – volume: 3 start-page: 1499 year: 2017 publication-title: ACS Biomater. Sci. Eng. – volume: 25 start-page: 263 year: 2019 publication-title: Nat. Med. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Int. – volume: 1 start-page: 2 year: 2018 publication-title: Bio‐Des. Manuf. – volume: 13 42 start-page: 548 year: 2018 2019 publication-title: PLoS One – volume: 10 start-page: 555 year: 2018 publication-title: Polymers – volume: 10 start-page: 664 year: 2018 publication-title: Polymers – volume: 24 start-page: 74 year: 2018 publication-title: Tissue Eng., Part C – volume: 171 start-page: 57 year: 2018 publication-title: Biomaterials – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 217 start-page: 26 year: 2013 publication-title: J. Neurosci. Methods – volume: 10 start-page: 6849 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: S start-page: 54 year: 1966 publication-title: Radiat Res – volume: 6 start-page: 95 year: 2013 publication-title: Biofabrication – volume: 10 start-page: 1675 year: 2009 publication-title: Biomacromolecules – volume: 106 start-page: 58 year: 2016 publication-title: Biomaterials – volume: 13 year: 2018 publication-title: Biotechnol. J. – volume: 7 year: 2015 publication-title: Biofabrication – volume: 3 start-page: 1109 year: 2017 publication-title: ACS Biomater. Sci. Eng. – volume: 56 start-page: 537 year: 2007 publication-title: Kem Ind – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 18 start-page: 33 year: 2012 publication-title: Tissue Eng., Part C – volume: 9 start-page: 5181 year: 2013 publication-title: Acta Biomater. – volume: 71 start-page: 379 year: 2018 publication-title: Acta Biomater. – volume: 162 start-page: 34 year: 2018 publication-title: Biomaterials – volume: 8 year: 2016 publication-title: Nanoscale – volume: 106 start-page: 865 year: 2018 publication-title: J. Biomed. Mater. Res., Part A – volume: 33 start-page: 88 year: 2016 publication-title: Acta Biomater. – volume: 7 start-page: 5837 year: 2017 publication-title: Sci. Rep. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 19 year: 2019 publication-title: Macromol. Biosci. – volume: 28 start-page: 677 year: 2016 publication-title: Adv. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 548 year: 2017 publication-title: Tissue Eng., Part C – volume: 84 start-page: 180 year: 2019 publication-title: Acta Biomater. – volume: 5 start-page: 2688 year: 2019 publication-title: ACS Biomater. Sci. Eng. – volume: 9 start-page: 3705 year: 2013 publication-title: Soft Matter – volume: 8 start-page: 296 year: 2018 publication-title: Nanomaterials – volume: 9 year: 2014 publication-title: PLoS One – volume: 260 15 start-page: 920 3 year: 1993 2006 publication-title: Science Cell Transplant. – volume: 24 start-page: 4514 year: 2019 publication-title: Molecules – volume: 14 start-page: 2202 year: 2014 publication-title: Lab Chip – volume: 21 start-page: 42 year: 2019 publication-title: Biomed. Microdevices – volume: 110 start-page: 45 year: 2016 publication-title: Biomaterials – volume: 3 start-page: 826 year: 2017 publication-title: ACS Biomater. Sci. Eng. – volume: 6 start-page: 562 year: 2018 publication-title: Biomater. Sci. – volume: 39 year: 2018 publication-title: Macromol. Rapid Commun. – volume: 20 start-page: 1860 year: 2019 publication-title: Biomacromolecules – volume: 8 year: 2016 publication-title: Biofabrication – volume: 131 year: 2018 publication-title: J. Visualized Exp. – volume: 24 start-page: 4922 year: 2014 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 2624 year: 2015 publication-title: Biomacromolecules – volume: 61 start-page: 41 year: 2017 publication-title: Acta Biomater. – volume: 19 start-page: 3390 year: 2018 publication-title: Biomacromolecules – volume: 11 start-page: 2151 year: 2014 publication-title: Mol. Pharmaceutics – volume: 364 start-page: 458 year: 2019 publication-title: Science – volume: 8 start-page: 1730 year: 2012 publication-title: Acta Biomater. – volume: 77 start-page: 389 year: 2018 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 71 start-page: 48 year: 2015 publication-title: Biomaterials – volume: 3 start-page: 1519 year: 2017 publication-title: ACS Biomater. Sci. Eng. – volume: 54 start-page: 3957 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 53 year: 2017 publication-title: Chem. Commun. – volume: 5 year: 2013 publication-title: Biofabrication – volume: 8 year: 2018 publication-title: Sci. Rep. – volume: 14 start-page: 2765 year: 2013 publication-title: Biomacromolecules – volume: 2 start-page: 1743 year: 2016 publication-title: ACS Biomater. Sci. Eng. – volume: 5 start-page: 2353 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 11 start-page: 579 year: 2018 publication-title: Materials – volume: 3 start-page: 1106 year: 2015 publication-title: J. Mater. Chem. B – volume: 27 start-page: 1607 year: 2015 publication-title: Adv. Mater. – volume: 19 start-page: 672 year: 2018 publication-title: Biomacromolecules – volume: 109 year: 2018 publication-title: Biopolymers – volume: 13 131 start-page: 826 98 year: 2017 2017 publication-title: Small Biomaterials – volume: 90 start-page: 634 year: 2018 publication-title: Mater. Sci. Eng., C – volume: 12 year: 2018 publication-title: J. Tissue Eng. Regener. Med. – volume: 42 start-page: 5301 year: 2004 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 131 year: 2009 publication-title: J. Biomech. Eng. – volume: 11 17 start-page: 1213 year: 2019 2016 publication-title: Nanoscale Biomacromolecules – volume: 6 132 year: 2017 2015 publication-title: Adv. Healthcare Mater. J Appl Polym Sci – volume: 8 start-page: 4451 year: 2017 publication-title: Polym. Chem. – volume: 8 start-page: 8020 year: 2018 publication-title: Sci. Rep. – volume: 5 start-page: 326 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 3 start-page: 130 year: 2017 publication-title: International Journal of Bioprinting – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 10 start-page: 630 year: 2014 publication-title: Acta Biomater. – volume: 105 start-page: 3262 year: 2017 publication-title: J. Biomed. Mater. Res., Part A – volume: 4 start-page: 4457 year: 2014 publication-title: Sci. Rep. – volume: 8 11 start-page: 1963 9738 year: 2018 2017 publication-title: Sci Rep‐Uk ACS Nano – volume: 25 start-page: 165 year: 2009 publication-title: Crit. Care Clin. – volume: 9 start-page: E39 year: 2015 publication-title: J. Tissue Eng. Regener. Med. – volume: 198 start-page: 261 year: 2018 publication-title: Carbohydr. Polym. – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 105 start-page: 2582 year: 2017 publication-title: J. Biomed. Mater. Res., Part A – volume: 101 start-page: 169 year: 2018 publication-title: Eur. Polym. J. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 50 start-page: 4913 year: 2017 publication-title: Macromolecules – ident: e_1_2_8_60_1 doi: 10.1038/s41598-018-26407-3 – ident: e_1_2_8_61_1 doi: 10.1088/2057-1976/aa70f0 – ident: e_1_2_8_230_1 doi: 10.1021/acsbiomaterials.7b00601 – ident: e_1_2_8_14_1 doi: 10.1021/acs.chemrev.5b00303 – ident: e_1_2_8_239_1 doi: 10.1038/s41467-018-03759-y – ident: e_1_2_8_126_1 doi: 10.1021/acsapm.8b00165 – year: 2020 ident: e_1_2_8_34_1 publication-title: Chem. Rev. – ident: e_1_2_8_75_1 doi: 10.1016/j.actbio.2018.02.035 – ident: e_1_2_8_166_1 doi: 10.1371/journal.pone.0195820 – ident: e_1_2_8_36_1 doi: 10.1016/j.biomaterials.2016.09.003 – start-page: 54 year: 1966 ident: e_1_2_8_159_1 publication-title: Radiat Res – ident: e_1_2_8_10_1 doi: 10.1039/C7PY00826K – ident: e_1_2_8_24_1 doi: 10.1016/j.matlet.2018.03.204 – ident: e_1_2_8_94_1 doi: 10.1007/s10439-016-1653-z – ident: e_1_2_8_255_1 doi: 10.1002/jbm.a.36179 – ident: e_1_2_8_252_1 doi: 10.1088/1758-5090/ab15a9 – ident: e_1_2_8_26_1 doi: 10.1002/smll.201700684 – ident: e_1_2_8_126_2 doi: 10.1039/C8TC03389G – ident: e_1_2_8_156_1 doi: 10.18063/IJB.2017.02.003 – ident: e_1_2_8_233_1 doi: 10.1002/bit.24488 – ident: e_1_2_8_243_1 doi: 10.1016/j.biomaterials.2015.08.028 – ident: e_1_2_8_209_1 doi: 10.1016/j.eurpolymj.2018.02.023 – ident: e_1_2_8_215_1 doi: 10.1088/1758-5090/aa53bd – ident: e_1_2_8_235_1 doi: 10.1021/bm200178w – ident: e_1_2_8_49_1 doi: 10.1088/1758-5090/aacd30 – ident: e_1_2_8_113_1 doi: 10.1088/1361-6528/aaafa1 – ident: e_1_2_8_144_1 doi: 10.1016/j.actbio.2012.09.039 – ident: e_1_2_8_135_1 doi: 10.1038/s41598-017-09201-5 – ident: e_1_2_8_245_1 doi: 10.1089/tea.2007.0173 – ident: e_1_2_8_236_1 doi: 10.1002/biot.201400305 – ident: e_1_2_8_37_1 doi: 10.1016/j.carbpol.2015.05.021 – ident: e_1_2_8_35_1 doi: 10.1073/pnas.1521342113 – ident: e_1_2_8_222_1 doi: 10.1016/j.biomaterials.2018.01.057 – ident: e_1_2_8_196_1 doi: 10.1021/acsbiomaterials.6b00432 – ident: e_1_2_8_212_1 doi: 10.1016/j.actbio.2017.08.005 – ident: e_1_2_8_123_1 doi: 10.1016/j.actbio.2014.09.033 – ident: e_1_2_8_43_1 doi: 10.1115/1.3128729 – ident: e_1_2_8_232_1 doi: 10.1039/C6NR02299E – ident: e_1_2_8_3_1 doi: 10.1111/j.1440-1797.2012.01615.x – ident: e_1_2_8_33_2 doi: 10.1021/acs.chemrev.7b00074 – ident: e_1_2_8_106_1 doi: 10.1002/adhm.201901667 – ident: e_1_2_8_56_1 doi: 10.1021/bm3011352 – ident: e_1_2_8_163_1 doi: 10.1039/C4MT00057A – ident: e_1_2_8_167_1 doi: 10.1039/C7CS00718C – ident: e_1_2_8_171_1 doi: 10.1021/bm1002398 – volume: 13 start-page: 826 year: 2017 ident: e_1_2_8_241_1 publication-title: Small – ident: e_1_2_8_147_1 doi: 10.1039/C8BM00689J – ident: e_1_2_8_190_1 doi: 10.1038/srep24474 – ident: e_1_2_8_204_1 doi: 10.1016/j.biomaterials.2018.04.034 – ident: e_1_2_8_109_1 doi: 10.1016/j.jiec.2017.12.032 – ident: e_1_2_8_6_1 doi: 10.1007/s10544-019-0372-2 – ident: e_1_2_8_201_1 doi: 10.1016/j.msec.2018.04.092 – ident: e_1_2_8_25_1 doi: 10.1021/acsami.8b01294 – ident: e_1_2_8_99_1 doi: 10.1002/advs.201700550 – ident: e_1_2_8_218_1 doi: 10.1016/j.biomaterials.2016.07.038 – ident: e_1_2_8_9_1 doi: 10.1039/c3bm00012e – ident: e_1_2_8_220_1 doi: 10.1088/1758-5090/8/3/035002 – ident: e_1_2_8_32_1 doi: 10.1002/adfm.201400274 – ident: e_1_2_8_76_1 doi: 10.1002/marc.201400501 – ident: e_1_2_8_213_1 doi: 10.1002/adma.201806899 – ident: e_1_2_8_2_1 doi: 10.1016/j.ccc.2008.12.001 – ident: e_1_2_8_138_1 doi: 10.1088/1758-5082/6/3/035004 – ident: e_1_2_8_155_1 doi: 10.1016/j.biomaterials.2011.10.067 – ident: e_1_2_8_33_3 doi: 10.1016/j.mtbio.2019.100008 – ident: e_1_2_8_116_1 doi: 10.1002/adma.201305506 – ident: e_1_2_8_117_1 doi: 10.1088/1758-5090/aa857c – ident: e_1_2_8_143_1 doi: 10.1016/j.actbio.2018.12.008 – ident: e_1_2_8_208_1 doi: 10.1021/acsami.5b10471 – ident: e_1_2_8_181_1 doi: 10.1115/1.4024575 – ident: e_1_2_8_120_1 doi: 10.1002/bip.23080 – ident: e_1_2_8_251_1 doi: 10.1002/jbm.a.36323 – ident: e_1_2_8_103_1 doi: 10.1021/acs.macromol.7b01114 – ident: e_1_2_8_165_1 doi: 10.1002/pola.20366 – ident: e_1_2_8_241_2 doi: 10.1016/j.biomaterials.2017.03.026 – ident: e_1_2_8_101_1 doi: 10.1002/adhm.201701249 – ident: e_1_2_8_118_1 doi: 10.1089/ten.tec.2017.0346 – ident: e_1_2_8_96_1 doi: 10.1371/journal.pone.0216776 – ident: e_1_2_8_216_1 doi: 10.1021/acsami.7b16059 – ident: e_1_2_8_153_1 doi: 10.3390/ma7043106 – ident: e_1_2_8_110_1 doi: 10.1038/s41598-017-05699-x – ident: e_1_2_8_145_1 doi: 10.1021/acs.biomac.8b01589 – ident: e_1_2_8_100_1 doi: 10.1038/srep27226 – ident: e_1_2_8_194_1 doi: 10.1088/1758-5090/aa9b4e – ident: e_1_2_8_258_1 doi: 10.1002/advs.201600058 – ident: e_1_2_8_192_1 doi: 10.1371/journal.pone.0189428 – ident: e_1_2_8_170_1 doi: 10.1021/bm400610b – ident: e_1_2_8_35_2 doi: 10.1016/j.trsl.2019.08.010 – ident: e_1_2_8_133_1 doi: 10.1016/j.jmbbm.2017.09.031 – ident: e_1_2_8_154_1 doi: 10.1021/acsami.6b11669 – ident: e_1_2_8_253_1 doi: 10.1038/nbt.3413 – ident: e_1_2_8_131_1 doi: 10.1088/1758-5082/5/1/015003 – ident: e_1_2_8_234_1 doi: 10.1089/ten.tea.2011.0543 – ident: e_1_2_8_81_1 doi: 10.1073/pnas.1808645116 – ident: e_1_2_8_226_1 doi: 10.1088/1758-5090/ab0692 – ident: e_1_2_8_20_1 doi: 10.1002/adfm.201505329 – ident: e_1_2_8_141_1 doi: 10.1016/j.progpolymsci.2019.05.001 – ident: e_1_2_8_197_1 doi: 10.1002/term.1745 – ident: e_1_2_8_8_1 doi: 10.1039/C7BM00765E – ident: e_1_2_8_150_1 doi: 10.1021/bm900036s – ident: e_1_2_8_88_1 doi: 10.1002/adma.201604983 – ident: e_1_2_8_254_1 doi: 10.1088/1758-5090/8/4/045005 – ident: e_1_2_8_127_1 doi: 10.1088/1758-5090/aa8cb7 – ident: e_1_2_8_140_1 doi: 10.1039/C6TB01501H – ident: e_1_2_8_121_1 doi: 10.1021/acsbiomaterials.6b00149 – ident: e_1_2_8_80_1 doi: 10.1038/s41598-017-16668-9 – ident: e_1_2_8_82_1 doi: 10.1002/anie.201411383 – ident: e_1_2_8_98_1 doi: 10.1021/mp400573g – ident: e_1_2_8_227_1 doi: 10.1002/adhm.201600182 – ident: e_1_2_8_53_1 doi: 10.1088/1758-5090/aa8dd8 – ident: e_1_2_8_90_1 doi: 10.1088/1758-5090/8/1/014101 – ident: e_1_2_8_207_1 doi: 10.1002/adhm.201600636 – ident: e_1_2_8_54_1 doi: 10.1002/adfm.201700798 – ident: e_1_2_8_221_1 doi: 10.1016/j.actbio.2018.03.021 – ident: e_1_2_8_228_1 doi: 10.1088/1758-5090/7/4/044105 – ident: e_1_2_8_91_1 doi: 10.1002/adhm.201600505 – ident: e_1_2_8_160_1 doi: 10.1002/adhm.201601122 – ident: e_1_2_8_185_1 doi: 10.1016/j.actbio.2015.12.039 – ident: e_1_2_8_188_1 doi: 10.1371/journal.pone.0112497 – ident: e_1_2_8_257_1 doi: 10.1016/j.actbio.2016.01.013 – ident: e_1_2_8_22_1 doi: 10.1002/adma.201703404 – ident: e_1_2_8_71_1 doi: 10.18063/IJB.2016.01.009 – ident: e_1_2_8_107_1 doi: 10.1002/mabi.201900098 – ident: e_1_2_8_97_1 doi: 10.1016/j.biomaterials.2017.01.042 – ident: e_1_2_8_198_1 doi: 10.1016/j.exer.2018.05.010 – ident: e_1_2_8_191_1 doi: 10.1088/1758-5090/aad36d – ident: e_1_2_8_256_1 doi: 10.1038/s41598-018-28715-0 – ident: e_1_2_8_112_1 doi: 10.1002/adma.201503310 – ident: e_1_2_8_104_1 doi: 10.3390/polym11030569 – ident: e_1_2_8_14_3 doi: 10.1016/j.gendis.2017.10.002 – ident: e_1_2_8_175_1 doi: 10.1089/ten.tec.2011.0060 – ident: e_1_2_8_122_1 doi: 10.1021/acsami.9b03442 – ident: e_1_2_8_39_1 doi: 10.1002/adfm.201503423 – ident: e_1_2_8_50_1 doi: 10.1039/c3sm27560d – ident: e_1_2_8_108_1 doi: 10.1038/srep04457 – ident: e_1_2_8_250_1 doi: 10.1088/1758-5090/aac902 – ident: e_1_2_8_40_1 doi: 10.1080/09205063.2018.1433420 – ident: e_1_2_8_1_2 doi: 10.3727/000000006783982340 – ident: e_1_2_8_205_1 doi: 10.1002/adfm.201703716 – ident: e_1_2_8_47_1 doi: 10.1089/ten.tec.2017.0222 – ident: e_1_2_8_13_1 doi: 10.1021/acsbiomaterials.8b00691 – ident: e_1_2_8_249_1 doi: 10.1002/jbm.a.36117 – ident: e_1_2_8_58_1 doi: 10.1002/jbm.a.34420 – ident: e_1_2_8_63_1 doi: 10.1002/jbm.a.36184 – ident: e_1_2_8_246_1 doi: 10.1002/adhm.201601451 – ident: e_1_2_8_169_1 doi: 10.1016/j.actbio.2013.10.016 – ident: e_1_2_8_102_1 doi: 10.1016/j.actbio.2012.01.029 – ident: e_1_2_8_95_1 doi: 10.1088/1758-5082/6/2/024105 – ident: e_1_2_8_89_1 doi: 10.1002/adfm.201605352 – ident: e_1_2_8_55_1 doi: 10.1016/j.tibtech.2019.12.020 – ident: e_1_2_8_68_1 doi: 10.1039/C4TB01727G – ident: e_1_2_8_65_1 doi: 10.3390/molecules24244514 – start-page: 12 year: 2019 ident: e_1_2_8_84_1 publication-title: Materials – ident: e_1_2_8_124_1 doi: 10.1002/adhm.201800992 – ident: e_1_2_8_52_1 doi: 10.1002/term.2058 – ident: e_1_2_8_129_1 doi: 10.1021/acs.biomac.5b00363 – volume: 6 start-page: 1701026 year: 2017 ident: e_1_2_8_23_1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201701021 – ident: e_1_2_8_186_1 doi: 10.1088/1758-5090/8/3/035020 – ident: e_1_2_8_223_1 doi: 10.1088/1758-5090/8/3/035003 – ident: e_1_2_8_148_1 doi: 10.1002/adma.201405076 – ident: e_1_2_8_182_1 doi: 10.1002/adhm.201801501 – ident: e_1_2_8_5_1 doi: 10.1002/biot.201800148 – ident: e_1_2_8_210_1 doi: 10.6023/A14100721 – ident: e_1_2_8_151_1 doi: 10.1016/S0142-9612(02)00274-0 – ident: e_1_2_8_92_1 doi: 10.1002/adhm.201700015 – ident: e_1_2_8_105_1 doi: 10.1021/acs.biomac.7b01827 – ident: e_1_2_8_168_1 doi: 10.1126/sciadv.1500758 – ident: e_1_2_8_45_1 doi: 10.1088/1758-5090/7/4/045011 – ident: e_1_2_8_50_4 doi: 10.3390/ma6041285 – ident: e_1_2_8_50_3 doi: 10.1016/j.biomaterials.2010.11.008 – ident: e_1_2_8_247_1 doi: 10.1002/mabi.201200471 – ident: e_1_2_8_160_2 doi: 10.1002/app.42458 – ident: e_1_2_8_44_1 doi: 10.1038/s41598-017-17286-1 – ident: e_1_2_8_7_1 doi: 10.1089/ten.teb.2016.0200 – ident: e_1_2_8_142_1 doi: 10.1002/adfm.201401502 – ident: e_1_2_8_83_1 doi: 10.1021/acsbiomaterials.6b00158 – ident: e_1_2_8_215_2 doi: 10.1088/1758-5090/aacb42 – ident: e_1_2_8_16_1 doi: 10.1021/acsbiomaterials.9b00047 – ident: e_1_2_8_27_1 doi: 10.1021/acsbiomaterials.7b00224 – ident: e_1_2_8_176_1 doi: 10.1002/bit.24455 – ident: e_1_2_8_1_1 doi: 10.1126/science.8493529 – ident: e_1_2_8_195_1 doi: 10.1002/term.2602 – ident: e_1_2_8_137_2 doi: 10.1021/acsnano.7b01008 – ident: e_1_2_8_29_1 doi: 10.1002/adhm.201701026 – ident: e_1_2_8_134_1 doi: 10.3390/ma11040579 – ident: e_1_2_8_178_1 doi: 10.1016/j.msec.2016.10.069 – ident: e_1_2_8_172_1 doi: 10.1039/C4LC00030G – ident: e_1_2_8_4_3 doi: 10.1002/adma.201804041 – ident: e_1_2_8_206_1 doi: 10.1088/1758-5090/aa7e96 – ident: e_1_2_8_161_1 doi: 10.1088/1758-5090/aa7279 – ident: e_1_2_8_19_1 doi: 10.1039/C7CC08225H – ident: e_1_2_8_259_1 doi: 10.1002/marc.201700534 – ident: e_1_2_8_136_1 doi: 10.1088/1758-5090/8/3/035004 – ident: e_1_2_8_77_1 doi: 10.1002/marc.201600695 – ident: e_1_2_8_111_1 doi: 10.1016/j.biomaterials.2009.08.055 – ident: e_1_2_8_231_1 doi: 10.1021/acsami.7b18197 – ident: e_1_2_8_17_1 doi: 10.1039/C7BM01015J – ident: e_1_2_8_244_1 doi: 10.1021/acsbiomaterials.6b00288 – ident: e_1_2_8_31_1 doi: 10.1021/bm060010d – ident: e_1_2_8_132_1 doi: 10.1002/adhm.201700255 – ident: e_1_2_8_187_1 doi: 10.1088/1758-5090/8/2/025016 – ident: e_1_2_8_146_1 doi: 10.1002/adfm.201700318 – ident: e_1_2_8_158_1 doi: 10.1039/C8BM01246F – ident: e_1_2_8_79_1 doi: 10.1039/C3CP55092C – ident: e_1_2_8_4_1 doi: 10.1038/nbt.2958 – ident: e_1_2_8_50_2 doi: 10.1080/00914037.2016.1201830 – ident: e_1_2_8_87_1 doi: 10.1002/adma.201904209 – ident: e_1_2_8_93_1 doi: 10.1002/adhm.201801048 – ident: e_1_2_8_46_1 doi: 10.1088/1758-5082/5/4/045010 – ident: e_1_2_8_237_1 doi: 10.1088/1758-5090/7/3/035006 – ident: e_1_2_8_166_2 doi: 10.1177/0391398819856024 – ident: e_1_2_8_202_1 doi: 10.1016/j.carbpol.2018.06.081 – ident: e_1_2_8_229_1 doi: 10.1088/1758-5090/7/4/045009 – ident: e_1_2_8_119_1 doi: 10.1021/acsami.6b10673 – ident: e_1_2_8_70_2 doi: 10.1021/acs.biomac.6b00039 – ident: e_1_2_8_199_1 doi: 10.1002/adhm.201800050 – ident: e_1_2_8_15_1 doi: 10.1088/1758-5090/aac00c – ident: e_1_2_8_73_1 doi: 10.1016/j.jneumeth.2013.04.009 – ident: e_1_2_8_149_1 doi: 10.1007/s11706-013-0211-y – ident: e_1_2_8_14_2 doi: 10.1007/978-981-13-0950-2_2 – ident: e_1_2_8_38_1 doi: 10.1016/j.carbpol.2018.07.001 – ident: e_1_2_8_180_1 doi: 10.1088/1758-5082/3/3/034113 – ident: e_1_2_8_4_2 doi: 10.1016/j.addr.2018.07.004 – ident: e_1_2_8_114_1 doi: 10.3390/nano8050296 – ident: e_1_2_8_157_1 doi: 10.1088/1748-605X/aaa5b6 – ident: e_1_2_8_177_1 doi: 10.1089/ten.tec.2011.0382 – ident: e_1_2_8_203_1 doi: 10.1021/acsami.7b19808 – ident: e_1_2_8_62_1 doi: 10.1021/acs.biomac.5b00188 – ident: e_1_2_8_137_1 doi: 10.1038/s41598-018-20385-2 – ident: e_1_2_8_30_1 doi: 10.1021/acsami.7b19730 – ident: e_1_2_8_69_1 doi: 10.1039/c3sm27389j – ident: e_1_2_8_200_1 doi: 10.1002/adhm.201801631 – ident: e_1_2_8_217_1 doi: 10.1002/adma.201800242 – ident: e_1_2_8_78_1 doi: 10.1007/s00397-015-0837-z – ident: e_1_2_8_130_1 doi: 10.1088/1758-5090/8/4/045002 – ident: e_1_2_8_164_1 doi: 10.1039/C9LC00117D – ident: e_1_2_8_240_1 doi: 10.1021/acsbiomaterials.7b00101 – ident: e_1_2_8_59_1 doi: 10.1088/1758-5090/7/4/044102 – ident: e_1_2_8_72_1 doi: 10.3390/polym10060664 – ident: e_1_2_8_11_1 doi: 10.1039/C5LC90069G – ident: e_1_2_8_238_1 doi: 10.1002/adma.201703443 – ident: e_1_2_8_21_1 doi: 10.1021/acsbiomaterials.6b00203 – ident: e_1_2_8_57_1 doi: 10.1007/s00170-019-03438-2 – ident: e_1_2_8_125_1 doi: 10.1371/journal.pone.0177628 – ident: e_1_2_8_12_1 doi: 10.1007/s42242-018-0004-3 – ident: e_1_2_8_174_1 doi: 10.1002/adhm.201500677 – ident: e_1_2_8_42_1 doi: 10.1088/1758-5090/aa7b1d – volume: 56 start-page: 537 year: 2007 ident: e_1_2_8_152_1 publication-title: Kem Ind – ident: e_1_2_8_179_1 doi: 10.1039/c3tb21093f – ident: e_1_2_8_189_1 doi: 10.1002/adhm.201801512 – ident: e_1_2_8_173_1 doi: 10.1371/journal.pone.0163902 – ident: e_1_2_8_33_1 doi: 10.1016/j.biotechadv.2015.12.011 – ident: e_1_2_8_67_1 doi: 10.1016/j.biomaterials.2015.07.022 – ident: e_1_2_8_18_1 doi: 10.1016/j.actbio.2017.10.047 – ident: e_1_2_8_183_1 doi: 10.1038/s41598-017-04691-9 – ident: e_1_2_8_41_1 doi: 10.1088/1758-5090/7/4/045012 – ident: e_1_2_8_224_1 doi: 10.1088/1758-5090/ab15cb – ident: e_1_2_8_184_1 doi: 10.1038/srep29977 – ident: e_1_2_8_139_1 doi: 10.1021/acsami.7b13602 – volume: 9 start-page: 17457 year: 2017 ident: e_1_2_8_242_1 publication-title: ACS Appl. Mater. Int. – ident: e_1_2_8_219_1 doi: 10.1038/s41591-018-0296-z – ident: e_1_2_8_248_1 doi: 10.1088/1758-5082/6/3/035001 – ident: e_1_2_8_211_1 doi: 10.1021/acsbiomaterials.6b00031 – ident: e_1_2_8_85_1 doi: 10.1126/science.aav9750 – ident: e_1_2_8_66_1 doi: 10.1016/j.biomaterials.2010.06.035 – ident: e_1_2_8_162_1 doi: 10.1080/17425247.2017.1360865 – ident: e_1_2_8_70_1 doi: 10.1039/C9NR01687B – ident: e_1_2_8_33_4 doi: 10.1002/smll.201805530 – ident: e_1_2_8_51_1 doi: 10.3390/ma11030454 – ident: e_1_2_8_74_1 doi: 10.1021/acs.langmuir.7b02540 – ident: e_1_2_8_128_1 doi: 10.1021/acs.biomac.8b00696 – ident: e_1_2_8_225_1 doi: 10.1002/adhm.201801181 – volume: 131 start-page: 56372 year: 2018 ident: e_1_2_8_193_1 publication-title: J. Visualized Exp. – ident: e_1_2_8_115_1 doi: 10.3390/polym10050555 – ident: e_1_2_8_64_1 doi: 10.1089/ten.tec.2015.0307 – ident: e_1_2_8_86_1 doi: 10.1016/B978-1-4557-2852-7.00006-8 – ident: e_1_2_8_214_1 doi: 10.1021/acsbiomaterials.6b00226 – ident: e_1_2_8_28_1 doi: 10.1007/s00397-015-0906-3 – ident: e_1_2_8_48_1 doi: 10.1002/term.1682 |
SSID | ssj0031247 |
Score | 2.6909945 |
SecondaryResourceType | review_article |
Snippet | Three‐dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as... Three-dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2002931 |
SubjectTerms | 3-D printers 3D bioprinting Bioengineering bioinks Biomechanics Biomimetics Bioprinting Crosslinking crosslinking strategies Design modifications Hydrogels hydrogel–cell interactions Nanotechnology Printing, Three-Dimensional Three dimensional printing Tissue Engineering |
Title | Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202002931 https://www.ncbi.nlm.nih.gov/pubmed/32734720 https://www.proquest.com/docview/2439595031 https://www.proquest.com/docview/2429773454 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfqlOiSD41K0kabs-zukY4kTUwd5KkqYizlZ2eZi_3nN6c1NE0LeGJG1up99HcvIdQs5MEHlcG7yiHMS2MLFjKwBqG7AlCiIZKJE5j_dvvd5AXA_d4cIt_lwfotpwQ8vI_tdo4FJNmp-ioZPXER4doJNBkF2kRoctZEX3lX4UB_DKoqsAZtkovFWqNjqsuVx9GZW-Uc1l5ppBT3eDyLLRucfJS2M2VQ39_kXP8T-92iTrBS-l7XwhbZEVk2yTtQW1wh3S7mDbi2ALtJS1NRMKvJfyS3rxnOIuIfpR0zSmd-lonh0H0d48GqdPAMK7ZNC9euz07CICg61dGDRb-NpRvhcHwgARiYVg0jWQkrGQEZAXrR3PYIjPFhCbloq4zzwjY80ixTVvCb5HakmamANCA08JDYBpWjICiuZJEUsGwOjiq6XxLGKXMxDqQp4co2SMwlxYmYU4NGE1NBY5r8q_5cIcP5aslxMaFgY6CRkQMTdwHcw-rbLBtPC8RCYmnWEZBuyYC1dYZD9fCNWnOMoC-cyxCMum85c2hA_9m5sqdfiXSkdkFZ9z_7Y6qU3HM3MMhGiqTrJF_wHcggBp |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD7quge2hzHY2LoVMBLTnkKD7aTNAw-lpSrQomkDibfgOM40rTSoF6Hyr_ZX-EWckxsUNCEh8cCjY8dxfPs-28ffAdg0XugKbeiKshdZ0kS2FSBQW4gtoRcqL5CJ8Xj_yO2eyINT57QE__K7MKk-RLHhRiMjma9pgNOGdO1WNXR8PqCzA7Iy8MR2Zld5aGaXuGob7-y3sYm_cd7ZO251rcyxgKUdZDiWrGs7qLuRJw3iayQlV47BkIqkChGTtbZdQ54rG4jXjSAUde4aFWkeBkKLhhSY7yt4TW7ESa6__bNQrBIIl4k_F0RJi6S-cp1Im9fmyzuPgw_I7TxXTsCuswjXeTWlNi5_t6aTYEtf3VOQfFH1-B7eZdSbNdOxsgQlM1yGt3cEGT9As0WVlfmTYLlyrxkzpPZMtNnun5g2QslUnMUR-xEPZsmJF-vOwlH8G3nGRzh5ln9YgfIwHprPwDw3kBo5gWmoEFmoq2SkOGK_Q1kr41bAypvc15kCOzkCGfipdjT3qSn8oikq8L1If5Fqj_w3ZTXvQX42B419jlzT8RybojeKaJw96EhIDU08pTQcFwBCOrICn9KeV3xKkPJRndsV4En_eaQM_q9-r1eEvjzlpXVY6B73e35v_-jwK7yh56k5XxXKk9HUrCL_mwRryYhjcPbcXfMGWIZdtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxQxFD5BTIw-qHiBVZCaaHwaGNpOd_vgA7BsFlkIUUl4Gzu9GOOyQ9jdmPVX-Vf8R54zN1yNISHhwceZdjqdnrbfN-3pdwBeee2UsJ6OKOsQSR_iKEOgjhBbnHZGZ7JwHj88Uv0T-e40OV2AH_VZmFIfollwo5FRzNc0wM9d2LwUDR2fDWnrgJwMtNiq3CoP_Owb_rSN3-530cKvOe_tfdztR1VcgcgmSHAi2bZx1lZBS4_wGqTkJvF4ZYI0DiHZ2lh5ClzZQbjuZE60ufImWO4yYUVHCiz3FtyWKtYULKL7vhGsEoiWRTgXBMmIlL5qmciYb87Xdx4G_-K281S5wLreA_hZt1Lp4vJ1YzrJNuz3PwQk_6dmfAj3K-LNtsuRsgQLfvQI7v0mx_gYtneprapoEqzW7fVjhsSeiS7b-ZLTMig5irM8sON8OCv2u1h_5i7yz8gynsDJjXzDU1gc5SO_AkyrTFpkBL5jHHJQZWQwHJE_oaKNVy2IaounttJfpzAgw7RUjuYpmSJtTNGCN03-81J55J85V-sOlFYz0DjlyDQTncSU_LJJxrmDNoTMyOdTysOR_guZyBYslx2veZUg3aM2j1vAi-5zRR3SD4eDQXP17DoPrcOd424vHewfHTyHu3S79OVbhcXJxdSvIfmbZC-K8cbg0033zF-6T1xk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crosslinking+Strategies+for+3D+Bioprinting+of+Polymeric+Hydrogels&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=GhavamiNejad%2C+Amin&rft.au=Ashammakhi%2C+Nureddin&rft.au=Wu%2C+Xiao+Yu&rft.au=Khademhosseini%2C+Ali&rft.date=2020-09-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=16&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202002931&rft.externalDBID=10.1002%252Fsmll.202002931&rft.externalDocID=SMLL202002931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |