Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels

Three‐dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which cros...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 35; pp. e2002931 - n/a
Main Authors GhavamiNejad, Amin, Ashammakhi, Nureddin, Wu, Xiao Yu, Khademhosseini, Ali
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Three‐dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue‐like constructs in future. When designing a 3D bioprinting system, the selection of an appropriate crosslinking method is required, to enable successful printability and to ensure cytocompatibility, stability, and sustainability of the resulting tissue constructs. The present work systematically summarizes recent advances made in the development of crosslinking methods and their application in 3D bioprinting.
AbstractList Three‐dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue‐like constructs in future. When designing a 3D bioprinting system, the selection of an appropriate crosslinking method is required, to enable successful printability and to ensure cytocompatibility, stability, and sustainability of the resulting tissue constructs. The present work systematically summarizes recent advances made in the development of crosslinking methods and their application in 3D bioprinting.
Three-dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue-like constructs in future.Three-dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue-like constructs in future.
Three‐dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue‐like constructs in future.
Author Ashammakhi, Nureddin
GhavamiNejad, Amin
Wu, Xiao Yu
Khademhosseini, Ali
Author_xml – sequence: 1
  givenname: Amin
  orcidid: 0000-0002-0712-5653
  surname: GhavamiNejad
  fullname: GhavamiNejad, Amin
  email: amin.ghavaminejad@utoronto.ca
  organization: University of Toronto
– sequence: 2
  givenname: Nureddin
  surname: Ashammakhi
  fullname: Ashammakhi, Nureddin
  organization: University of California‐Los Angeles
– sequence: 3
  givenname: Xiao Yu
  surname: Wu
  fullname: Wu, Xiao Yu
  organization: University of Toronto
– sequence: 4
  givenname: Ali
  surname: Khademhosseini
  fullname: Khademhosseini, Ali
  email: khademh@terasaki.org
  organization: Terasaki Institute for Biomedical Innovation (TIBI)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32734720$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYNU7EO3LmXAjZupec2ks6z1UaGiUF2HNJMpqZlJTabI_Hsz9CEUxFVuuN-53HtOH3QqWykALhEcIgjxrS-NGWKIQ50RdAJ6KEUkTkc46xxqBLug7_0KQoIwZWegSzAjlGHYA-OJs94bXX3qahnNaydqtdTKR4V1EbmP7rRdO13VbdcW0Zs1TamcltG0yZ1dKuPPwWkhjFcXu3cAPh4f3ifTePb69DwZz2KZhD1iyiRcsLTIqEIQF5RikajwEwUVOUwTKWGqEpZko5SS0SInDKdKFBLnCyLJiJIBuNnOXTv7tVG-5qX2UhkjKmU3nmOKMxbOSlr0-ghd2Y2rwnaBIlmSJcGJQF3tqM2iVDkPd5bCNXxvTgDoFpCtR04VXOpa1NpWwSZtOIK8zYC3GfBDBkE2PJLtJ_8pyLaCb21U8w_N5y-z2a_2B6QHl-I
CitedBy_id crossref_primary_10_1016_j_addr_2021_04_001
crossref_primary_10_1039_D4TB00310A
crossref_primary_10_1039_D4TB00386A
crossref_primary_10_1016_j_matpr_2022_09_010
crossref_primary_10_1007_s00289_022_04580_w
crossref_primary_10_1021_acsbiomaterials_4c01764
crossref_primary_10_1088_1758_5090_ad35eb
crossref_primary_10_1002_mabi_202200434
crossref_primary_10_1088_1758_5090_aca5b8
crossref_primary_10_1126_sciadv_ade7880
crossref_primary_10_1088_1758_5090_ac0b9a
crossref_primary_10_1007_s00289_024_05324_8
crossref_primary_10_1016_j_ijpharm_2024_123937
crossref_primary_10_1021_acsbiomaterials_2c00370
crossref_primary_10_1021_jacs_4c02317
crossref_primary_10_3390_gels10020153
crossref_primary_10_3390_ma17051218
crossref_primary_10_3390_polym14153023
crossref_primary_10_3390_polym15102323
crossref_primary_10_1016_j_ijbiomac_2024_130194
crossref_primary_10_1088_1758_5090_acd6bf
crossref_primary_10_1038_s41467_024_45938_0
crossref_primary_10_3389_frsfm_2024_1354122
crossref_primary_10_3390_ijms23073432
crossref_primary_10_1021_acs_biomac_1c01105
crossref_primary_10_1021_acs_molpharmaceut_2c00038
crossref_primary_10_1557_s43577_023_00546_z
crossref_primary_10_1002_admi_202200779
crossref_primary_10_1016_j_ijbiomac_2023_125201
crossref_primary_10_14326_abe_13_293
crossref_primary_10_1088_1758_5090_adb999
crossref_primary_10_3390_biom12020216
crossref_primary_10_3390_ma16237461
crossref_primary_10_1002_mabi_202300156
crossref_primary_10_1039_D1TB02230J
crossref_primary_10_1002_adhm_202101439
crossref_primary_10_1007_s42242_023_00236_4
crossref_primary_10_1021_acs_iecr_2c02779
crossref_primary_10_1039_D2BM01036D
crossref_primary_10_1002_admt_202400119
crossref_primary_10_1088_1758_5090_ad7906
crossref_primary_10_1021_acsomega_3c08112
crossref_primary_10_1002_adbi_202300056
crossref_primary_10_3390_designs8040083
crossref_primary_10_1002_marc_202300214
crossref_primary_10_2478_abm_2023_0063
crossref_primary_10_1039_D3MH00516J
crossref_primary_10_3390_gels9020129
crossref_primary_10_1021_acsami_2c20098
crossref_primary_10_1088_2515_7639_acada1
crossref_primary_10_1039_D2CS01011A
crossref_primary_10_3390_molecules27030882
crossref_primary_10_1111_cpr_13453
crossref_primary_10_1063_5_0031475
crossref_primary_10_1088_2516_1091_ac8259
crossref_primary_10_1016_j_matt_2021_10_018
crossref_primary_10_1021_acsami_3c02961
crossref_primary_10_1002_jbm_a_37650
crossref_primary_10_1002_mabi_202200333
crossref_primary_10_1016_j_ijbiomac_2024_134528
crossref_primary_10_3390_polym14061211
crossref_primary_10_1007_s00449_023_02965_3
crossref_primary_10_1039_D1MH01632F
crossref_primary_10_1021_acsnano_4c00543
crossref_primary_10_1039_D3TB03032F
crossref_primary_10_1039_D4BM00550C
crossref_primary_10_1016_j_biomaterials_2022_121531
crossref_primary_10_1021_acs_biomac_3c00887
crossref_primary_10_1021_acs_chemrev_1c00531
crossref_primary_10_3390_gels11020110
crossref_primary_10_1007_s10911_024_09557_1
crossref_primary_10_1007_s42242_021_00169_w
crossref_primary_10_3390_molecules26092817
crossref_primary_10_1115_1_4053198
crossref_primary_10_3390_pharmaceutics13091444
crossref_primary_10_1016_j_ijbiomac_2023_127882
crossref_primary_10_1002_dvdy_385
crossref_primary_10_1021_acsbiomaterials_3c01569
crossref_primary_10_1002_marc_202100445
crossref_primary_10_1002_marc_202200272
crossref_primary_10_1089_ten_teb_2021_0012
crossref_primary_10_1515_rams_2023_0180
crossref_primary_10_1002_adfm_202010609
crossref_primary_10_1007_s44174_024_00171_7
crossref_primary_10_3390_gels10060366
crossref_primary_10_1038_s43586_021_00073_8
crossref_primary_10_1063_5_0123058
crossref_primary_10_3390_jmmp5030091
crossref_primary_10_3390_polym15153223
crossref_primary_10_1088_1758_5090_ac14ca
crossref_primary_10_3390_md19120708
crossref_primary_10_1016_j_ijbiomac_2023_127410
crossref_primary_10_1039_D1BM00695A
crossref_primary_10_3390_gels10020114
crossref_primary_10_3390_jmmp6020045
crossref_primary_10_1021_acsami_4c03209
crossref_primary_10_1557_s43577_022_00348_9
crossref_primary_10_1002_adfm_202301209
crossref_primary_10_1002_jctb_7389
crossref_primary_10_1002_adfm_202404962
crossref_primary_10_1088_1748_605X_ada59d
crossref_primary_10_1002_mabi_202300484
crossref_primary_10_3390_ijms241310620
crossref_primary_10_1016_j_carbpol_2023_121313
crossref_primary_10_3390_polym14091844
crossref_primary_10_1039_D0QM01099E
crossref_primary_10_3389_fmech_2020_568726
crossref_primary_10_3390_biomedicines11061742
crossref_primary_10_3390_pharmaceutics16111388
crossref_primary_10_1021_jacsau_4c00677
crossref_primary_10_1021_acs_chemrev_0c01200
crossref_primary_10_1088_1758_5090_ad17cf
crossref_primary_10_3390_gels9070547
crossref_primary_10_1088_1748_605X_ad4df7
crossref_primary_10_1002_adfm_202313942
crossref_primary_10_1021_acs_biomac_4c00671
crossref_primary_10_1039_D2TB02052A
crossref_primary_10_1039_D3BM01792C
crossref_primary_10_1039_D2BM00709F
crossref_primary_10_1002_adhm_202203268
crossref_primary_10_1039_D2TB02040H
crossref_primary_10_20517_ss_2024_59
crossref_primary_10_1021_acsbiomaterials_3c00898
crossref_primary_10_3390_gels9110890
crossref_primary_10_1088_1748_605X_ad651f
crossref_primary_10_1002_smtd_202400076
crossref_primary_10_3390_polym13142222
crossref_primary_10_1016_j_pmatsci_2023_101072
crossref_primary_10_1021_acsbiomaterials_0c01749
crossref_primary_10_1088_1758_5090_abe7ab
crossref_primary_10_1063_5_0227692
crossref_primary_10_1002_marc_202300661
crossref_primary_10_1002_mame_202100871
crossref_primary_10_1002_adhm_202301265
crossref_primary_10_34172_apb_2022_069
crossref_primary_10_1007_s42242_021_00153_4
crossref_primary_10_1007_s40883_024_00381_x
crossref_primary_10_1088_1758_5090_ac9019
crossref_primary_10_1002_admt_202401097
crossref_primary_10_1038_s41467_024_48023_8
crossref_primary_10_1021_acs_biomac_4c00547
crossref_primary_10_1002_adhm_202401603
crossref_primary_10_1088_1748_605X_ac1ab4
crossref_primary_10_1016_j_procir_2024_08_017
crossref_primary_10_1039_D4BM01304B
crossref_primary_10_3390_bioengineering11040363
crossref_primary_10_1016_j_conbuildmat_2023_132416
crossref_primary_10_1021_acs_biomac_3c00168
crossref_primary_10_1002_advs_202404580
crossref_primary_10_1088_1758_5090_acab36
crossref_primary_10_1088_1758_5090_acab35
crossref_primary_10_1063_5_0023206
crossref_primary_10_1177_20417314241282476
crossref_primary_10_3389_pore_2023_1610996
crossref_primary_10_1080_09205063_2024_2321636
crossref_primary_10_1002_smll_202104996
crossref_primary_10_1021_acsabm_3c00806
crossref_primary_10_1021_acsabm_1c00219
crossref_primary_10_1115_1_4054086
crossref_primary_10_3390_polym15040898
crossref_primary_10_3390_bioengineering8100144
crossref_primary_10_1016_j_matdes_2023_112362
crossref_primary_10_1039_D0BM01428A
crossref_primary_10_1088_1758_5090_ad9b50
crossref_primary_10_1002_adhm_202400643
crossref_primary_10_1063_5_0032777
crossref_primary_10_1016_j_optlastec_2021_107344
crossref_primary_10_1080_09205063_2024_2449294
crossref_primary_10_1002_adhm_202403114
crossref_primary_10_1002_mabi_202000179
crossref_primary_10_1002_pat_6164
crossref_primary_10_1016_j_ijbiomac_2021_08_140
crossref_primary_10_3390_gels7040194
crossref_primary_10_1002_adma_202501994
crossref_primary_10_1039_D4SM00712C
crossref_primary_10_1039_D2ME00171C
crossref_primary_10_1016_j_mattod_2022_01_001
crossref_primary_10_1016_j_eurpolymj_2021_110807
crossref_primary_10_1016_j_bprint_2022_e00214
crossref_primary_10_3390_pharmaceutics13091373
crossref_primary_10_1002_admi_202100670
crossref_primary_10_1002_slct_202203681
crossref_primary_10_1021_jacsau_3c00281
crossref_primary_10_1002_adma_202406825
crossref_primary_10_1016_j_trac_2022_116672
Cites_doi 10.1038/s41598-018-26407-3
10.1088/2057-1976/aa70f0
10.1021/acsbiomaterials.7b00601
10.1021/acs.chemrev.5b00303
10.1038/s41467-018-03759-y
10.1021/acsapm.8b00165
10.1016/j.actbio.2018.02.035
10.1371/journal.pone.0195820
10.1016/j.biomaterials.2016.09.003
10.1039/C7PY00826K
10.1016/j.matlet.2018.03.204
10.1007/s10439-016-1653-z
10.1002/jbm.a.36179
10.1088/1758-5090/ab15a9
10.1002/smll.201700684
10.1039/C8TC03389G
10.18063/IJB.2017.02.003
10.1002/bit.24488
10.1016/j.biomaterials.2015.08.028
10.1016/j.eurpolymj.2018.02.023
10.1088/1758-5090/aa53bd
10.1021/bm200178w
10.1088/1758-5090/aacd30
10.1088/1361-6528/aaafa1
10.1016/j.actbio.2012.09.039
10.1038/s41598-017-09201-5
10.1089/tea.2007.0173
10.1002/biot.201400305
10.1016/j.carbpol.2015.05.021
10.1073/pnas.1521342113
10.1016/j.biomaterials.2018.01.057
10.1021/acsbiomaterials.6b00432
10.1016/j.actbio.2017.08.005
10.1016/j.actbio.2014.09.033
10.1115/1.3128729
10.1039/C6NR02299E
10.1111/j.1440-1797.2012.01615.x
10.1021/acs.chemrev.7b00074
10.1002/adhm.201901667
10.1021/bm3011352
10.1039/C4MT00057A
10.1039/C7CS00718C
10.1021/bm1002398
10.1039/C8BM00689J
10.1038/srep24474
10.1016/j.biomaterials.2018.04.034
10.1016/j.jiec.2017.12.032
10.1007/s10544-019-0372-2
10.1016/j.msec.2018.04.092
10.1021/acsami.8b01294
10.1002/advs.201700550
10.1016/j.biomaterials.2016.07.038
10.1039/c3bm00012e
10.1088/1758-5090/8/3/035002
10.1002/adfm.201400274
10.1002/marc.201400501
10.1002/adma.201806899
10.1016/j.ccc.2008.12.001
10.1088/1758-5082/6/3/035004
10.1016/j.biomaterials.2011.10.067
10.1016/j.mtbio.2019.100008
10.1002/adma.201305506
10.1088/1758-5090/aa857c
10.1016/j.actbio.2018.12.008
10.1021/acsami.5b10471
10.1115/1.4024575
10.1002/bip.23080
10.1002/jbm.a.36323
10.1021/acs.macromol.7b01114
10.1002/pola.20366
10.1016/j.biomaterials.2017.03.026
10.1002/adhm.201701249
10.1089/ten.tec.2017.0346
10.1371/journal.pone.0216776
10.1021/acsami.7b16059
10.3390/ma7043106
10.1038/s41598-017-05699-x
10.1021/acs.biomac.8b01589
10.1038/srep27226
10.1088/1758-5090/aa9b4e
10.1002/advs.201600058
10.1371/journal.pone.0189428
10.1021/bm400610b
10.1016/j.trsl.2019.08.010
10.1016/j.jmbbm.2017.09.031
10.1021/acsami.6b11669
10.1038/nbt.3413
10.1088/1758-5082/5/1/015003
10.1089/ten.tea.2011.0543
10.1073/pnas.1808645116
10.1088/1758-5090/ab0692
10.1002/adfm.201505329
10.1016/j.progpolymsci.2019.05.001
10.1002/term.1745
10.1039/C7BM00765E
10.1021/bm900036s
10.1002/adma.201604983
10.1088/1758-5090/8/4/045005
10.1088/1758-5090/aa8cb7
10.1039/C6TB01501H
10.1021/acsbiomaterials.6b00149
10.1038/s41598-017-16668-9
10.1002/anie.201411383
10.1021/mp400573g
10.1002/adhm.201600182
10.1088/1758-5090/aa8dd8
10.1088/1758-5090/8/1/014101
10.1002/adhm.201600636
10.1002/adfm.201700798
10.1016/j.actbio.2018.03.021
10.1088/1758-5090/7/4/044105
10.1002/adhm.201600505
10.1002/adhm.201601122
10.1016/j.actbio.2015.12.039
10.1371/journal.pone.0112497
10.1016/j.actbio.2016.01.013
10.1002/adma.201703404
10.18063/IJB.2016.01.009
10.1002/mabi.201900098
10.1016/j.biomaterials.2017.01.042
10.1016/j.exer.2018.05.010
10.1088/1758-5090/aad36d
10.1038/s41598-018-28715-0
10.1002/adma.201503310
10.3390/polym11030569
10.1016/j.gendis.2017.10.002
10.1089/ten.tec.2011.0060
10.1021/acsami.9b03442
10.1002/adfm.201503423
10.1039/c3sm27560d
10.1038/srep04457
10.1088/1758-5090/aac902
10.1080/09205063.2018.1433420
10.3727/000000006783982340
10.1002/adfm.201703716
10.1089/ten.tec.2017.0222
10.1021/acsbiomaterials.8b00691
10.1002/jbm.a.36117
10.1002/jbm.a.34420
10.1002/jbm.a.36184
10.1002/adhm.201601451
10.1016/j.actbio.2013.10.016
10.1016/j.actbio.2012.01.029
10.1088/1758-5082/6/2/024105
10.1002/adfm.201605352
10.1016/j.tibtech.2019.12.020
10.1039/C4TB01727G
10.3390/molecules24244514
10.1002/adhm.201800992
10.1002/term.2058
10.1021/acs.biomac.5b00363
10.1002/adhm.201701021
10.1088/1758-5090/8/3/035020
10.1088/1758-5090/8/3/035003
10.1002/adma.201405076
10.1002/adhm.201801501
10.1002/biot.201800148
10.6023/A14100721
10.1016/S0142-9612(02)00274-0
10.1002/adhm.201700015
10.1021/acs.biomac.7b01827
10.1126/sciadv.1500758
10.1088/1758-5090/7/4/045011
10.3390/ma6041285
10.1016/j.biomaterials.2010.11.008
10.1002/mabi.201200471
10.1002/app.42458
10.1038/s41598-017-17286-1
10.1089/ten.teb.2016.0200
10.1002/adfm.201401502
10.1021/acsbiomaterials.6b00158
10.1088/1758-5090/aacb42
10.1021/acsbiomaterials.9b00047
10.1021/acsbiomaterials.7b00224
10.1002/bit.24455
10.1126/science.8493529
10.1002/term.2602
10.1021/acsnano.7b01008
10.1002/adhm.201701026
10.3390/ma11040579
10.1016/j.msec.2016.10.069
10.1039/C4LC00030G
10.1002/adma.201804041
10.1088/1758-5090/aa7e96
10.1088/1758-5090/aa7279
10.1039/C7CC08225H
10.1002/marc.201700534
10.1088/1758-5090/8/3/035004
10.1002/marc.201600695
10.1016/j.biomaterials.2009.08.055
10.1021/acsami.7b18197
10.1039/C7BM01015J
10.1021/acsbiomaterials.6b00288
10.1021/bm060010d
10.1002/adhm.201700255
10.1088/1758-5090/8/2/025016
10.1002/adfm.201700318
10.1039/C8BM01246F
10.1039/C3CP55092C
10.1038/nbt.2958
10.1080/00914037.2016.1201830
10.1002/adma.201904209
10.1002/adhm.201801048
10.1088/1758-5082/5/4/045010
10.1088/1758-5090/7/3/035006
10.1177/0391398819856024
10.1016/j.carbpol.2018.06.081
10.1088/1758-5090/7/4/045009
10.1021/acsami.6b10673
10.1021/acs.biomac.6b00039
10.1002/adhm.201800050
10.1088/1758-5090/aac00c
10.1016/j.jneumeth.2013.04.009
10.1007/s11706-013-0211-y
10.1007/978-981-13-0950-2_2
10.1016/j.carbpol.2018.07.001
10.1088/1758-5082/3/3/034113
10.1016/j.addr.2018.07.004
10.3390/nano8050296
10.1088/1748-605X/aaa5b6
10.1089/ten.tec.2011.0382
10.1021/acsami.7b19808
10.1021/acs.biomac.5b00188
10.1038/s41598-018-20385-2
10.1021/acsami.7b19730
10.1039/c3sm27389j
10.1002/adhm.201801631
10.1002/adma.201800242
10.1007/s00397-015-0837-z
10.1088/1758-5090/8/4/045002
10.1039/C9LC00117D
10.1021/acsbiomaterials.7b00101
10.1088/1758-5090/7/4/044102
10.3390/polym10060664
10.1039/C5LC90069G
10.1002/adma.201703443
10.1021/acsbiomaterials.6b00203
10.1007/s00170-019-03438-2
10.1371/journal.pone.0177628
10.1007/s42242-018-0004-3
10.1002/adhm.201500677
10.1088/1758-5090/aa7b1d
10.1039/c3tb21093f
10.1002/adhm.201801512
10.1371/journal.pone.0163902
10.1016/j.biotechadv.2015.12.011
10.1016/j.biomaterials.2015.07.022
10.1016/j.actbio.2017.10.047
10.1038/s41598-017-04691-9
10.1088/1758-5090/7/4/045012
10.1088/1758-5090/ab15cb
10.1038/srep29977
10.1021/acsami.7b13602
10.1038/s41591-018-0296-z
10.1088/1758-5082/6/3/035001
10.1021/acsbiomaterials.6b00031
10.1126/science.aav9750
10.1016/j.biomaterials.2010.06.035
10.1080/17425247.2017.1360865
10.1039/C9NR01687B
10.1002/smll.201805530
10.3390/ma11030454
10.1021/acs.langmuir.7b02540
10.1021/acs.biomac.8b00696
10.1002/adhm.201801181
10.3390/polym10050555
10.1089/ten.tec.2015.0307
10.1016/B978-1-4557-2852-7.00006-8
10.1021/acsbiomaterials.6b00226
10.1007/s00397-015-0906-3
10.1002/term.1682
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202002931
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 32734720
10_1002_smll_202002931
SMLL202002931
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: EB021857; AR066193; AR057837; CA214411; HL137193; EB024403; EB023052; EB022403; R01EB021857
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: RGPIN‐2019‐07204
– fundername: NIAMS NIH HHS
  grantid: R01 AR057837
– fundername: NCI NIH HHS
  grantid: U01 CA214411
– fundername: NIAMS NIH HHS
  grantid: R01 AR066193
– fundername: NIAMS NIH HHS
  grantid: R01 AR072613
– fundername: NIBIB NIH HHS
  grantid: R01 EB021857
– fundername: NHLBI NIH HHS
  grantid: R01 HL137193
– fundername: NIBIB NIH HHS
  grantid: R01 EB023052
– fundername: NIBIB NIH HHS
  grantid: R01 EB024403
– fundername: NIBIB NIH HHS
  grantid: R21 EB022403
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c5161-47c0b76f94e102f442a5ef94af4ad065cc06e575986438bd3726eafc2db3c3843
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 08:23:05 EDT 2025
Fri Jul 25 12:09:54 EDT 2025
Thu Apr 03 06:58:25 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Tue Jul 01 02:10:54 EDT 2025
Wed Jan 22 16:34:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords bioinks
tissue engineering
3D bioprinting
crosslinking strategies
hydrogel-cell interactions
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5161-47c0b76f94e102f442a5ef94af4ad065cc06e575986438bd3726eafc2db3c3843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0712-5653
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7754762
PMID 32734720
PQID 2439595031
PQPubID 1046358
PageCount 30
ParticipantIDs proquest_miscellaneous_2429773454
proquest_journals_2439595031
pubmed_primary_32734720
crossref_citationtrail_10_1002_smll_202002931
crossref_primary_10_1002_smll_202002931
wiley_primary_10_1002_smll_202002931_SMLL202002931
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016 2019; 113 216
2010; 11
2013; 1
2019; 95
2018; 162
2015; 71
2019; 11
2015; 73
2019; 14
2016; 32
2014; 26
2019; 19
2014; 24
2012; 18
2012; 17
2013; 7
2012; 13
2013; 5
2013; 6
2013; 9
2016; 34
2016; 33
2018; 7
2018; 6
2018; 9
2018; 8
2018; 39
2018; 171
2018; 5
2009; 10
2017; 71
2018; 173
2019; 20
2018; 1
2019; 21
2019; 24
2015; 131
2019; 25
2014; 16
2014; 14
2018; 30
2018; 34
2014; 11
2014; 10
2019; 8
2019; 7
2017; 61
2018; 29
2010; 31
2004; 42
2018; 28
2019; 5
2019; 31
2018; 106
2018; 223
2018; 101
2015; 54
2020; 38
2019; 105
2014 2018 2019; 32 132 31
2018; 109
2011; 3
2012; 33
2012; 109
2018; 24
2016; 11
2016; 4
2015; 67
2016; 5
2017; 50
2018; 19
2017; 53
2018; 199
2016; 6
2018; 198
2016 2018 2017; 116 1078 4
2016; 2
2016; 3
2013; 217
2019; 48
2003; 24
2018; 90
2019 2016; 11 17
2018; 12
2017 2018; 9 10
2018; 11
2016; 28
2018; 10
2016; 26
2016; 8
2018; 15
2017 2017; 13 131
2018; 13
2016; 22
1993 2006; 260 15
2017; 6
2017; 7
2017; 8
2015; 36
2017; 3
2017; 45
2016; 106
2011; 12
2013; 101A
2017; 9
2019; 364
2018; 131
2019 2018; 1 6
1966; S
2018 2019; 13 42
2014; 4
2013; 14
2017 2015; 6 132
2013; 13
2017; 38
2020; 9
2019; 116
2016; 110
2018; 71
2014; 9
2018; 77
2017; 124
2014; 7
2014; 6
2015; 1
2009; 25
2015; 15
2015; 16
2015; 3
2017; 27
2015; 11
2017; 23
2006; 7
2008; 14
2017; 29
2018; 61
2009; 131
2015; 9
2018; 65
2015; 7
2007; 56
2016; 55
2015; 25
2009; 30
2015; 27
2019; 84
2016 2017 2019 2019; 34 117 1 15
2020
2017; 11
2017; 13
2017; 12
2013 2017 2011 2013; 9 66 32 6
2019
2018 2017; 8 11
2013; 135
2017; 105
2012; 8
e_1_2_8_241_2
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_249_1
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_1_2
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_230_1
e_1_2_8_253_1
Smith K. C. (e_1_2_8_159_1) 1966
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_238_1
e_1_2_8_215_2
e_1_2_8_215_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_166_2
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_227_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_254_1
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_14_3
e_1_2_8_37_1
e_1_2_8_239_1
e_1_2_8_216_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_243_1
e_1_2_8_220_1
e_1_2_8_228_1
e_1_2_8_205_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_217_1
e_1_2_8_255_1
Jin Y. F. (e_1_2_8_242_1) 2017; 9
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_2
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_70_2
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_244_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_233_1
e_1_2_8_256_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_245_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_257_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_200_1
e_1_2_8_223_1
Khoon J. H. G. (e_1_2_8_34_1) 2020
e_1_2_8_246_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
Costa J. B. (e_1_2_8_23_1) 2017; 6
e_1_2_8_67_1
e_1_2_8_137_2
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
Thayer P. S. (e_1_2_8_193_1) 2018; 131
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_33_4
e_1_2_8_33_3
e_1_2_8_250_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_258_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
Talebian A. (e_1_2_8_152_1) 2007; 56
e_1_2_8_33_2
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_251_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_259_1
e_1_2_8_236_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_126_2
e_1_2_8_149_1
Yang W. G. (e_1_2_8_241_1) 2017; 13
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_248_1
e_1_2_8_154_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_4_3
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_139_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_35_2
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
Wang Q. S. (e_1_2_8_84_1) 2019
e_1_2_8_127_1
e_1_2_8_50_4
e_1_2_8_12_1
e_1_2_8_50_2
e_1_2_8_50_3
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 15
  start-page: 3111
  year: 2015
  publication-title: Lab Chip
– volume: 24
  start-page: 165
  year: 2003
  publication-title: Biomaterials
– volume: 5
  start-page: 2174
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 14
  year: 2019
  publication-title: PLoS One
– volume: 6
  start-page: 915
  year: 2018
  publication-title: Biomater. Sci.
– volume: 12
  year: 2017
  publication-title: PLoS One
– volume: 23
  start-page: S9
  year: 2017
  publication-title: Tissue Eng., Part A
– volume: 6
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 7
  start-page: 3106
  year: 2014
  publication-title: Materials
– volume: 71
  start-page: 486
  year: 2018
  publication-title: Acta Biomater.
– volume: 6
  year: 2014
  publication-title: Biofabrication
– volume: 11
  year: 2016
  publication-title: PLoS One
– volume: 38
  start-page: 584
  year: 2020
  publication-title: Trends Biotechnol.
– volume: 10
  start-page: 9969
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 3
  start-page: 3534
  year: 2017
  publication-title: ACS Biomater. Sci. Eng.
– volume: 8
  year: 2019
  publication-title: Adv. Healthcare Mater.
– volume: 26
  start-page: 3612
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 199
  start-page: 58
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 6
  start-page: 1358
  year: 2014
  publication-title: Metallomics
– volume: 11
  start-page: 1574
  year: 2017
  publication-title: J. Tissue Eng. Regener. Med.
– volume: 73
  start-page: 267
  year: 2015
  publication-title: Acta Chim. Sin.
– volume: 9
  start-page: 1286
  year: 2015
  publication-title: J. Tissue Eng. Regener. Med.
– volume: 3
  year: 2011
  publication-title: Biofabrication
– volume: 2
  start-page: 1059
  year: 2016
  publication-title: ACS Biomater. Sci. Eng.
– volume: 55
  start-page: 163
  year: 2016
  publication-title: Rheol. Acta
– volume: 25
  start-page: 1352
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 3124
  year: 2014
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1126
  year: 2018
  publication-title: J. Biomater. Sci., Polym. Ed.
– volume: 36
  start-page: 447
  year: 2015
  publication-title: Macromol. Rapid Commun.
– volume: 1
  start-page: 6619
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 10
  start-page: 9957
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 65
  start-page: 174
  year: 2018
  publication-title: Acta Biomater.
– volume: 16
  start-page: 1489
  year: 2015
  publication-title: Biomacromolecules
– volume: 5
  start-page: 2488
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 4
  start-page: 6694
  year: 2016
  publication-title: J. Mater. Chem. B
– volume: 7
  start-page: 8624
  year: 2017
  publication-title: Sci Rep‐Uk
– start-page: 12
  year: 2019
  publication-title: Materials
– volume: 38
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 105
  start-page: 4599
  year: 2019
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 9 10
  year: 2017 2018
  publication-title: Biofabrication Biofabrication
– volume: 116
  start-page: 7738
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  year: 2017
  publication-title: Biofabrication
– volume: 32
  start-page: 170
  year: 2016
  publication-title: Acta Biomater.
– volume: 54
  start-page: 501
  year: 2015
  publication-title: Rheol. Acta
– volume: 13
  year: 2017
  publication-title: Small
– volume: 11
  year: 2019
  publication-title: Biofabrication
– volume: 15
  start-page: 77
  year: 2018
  publication-title: Expert Opinion on Drug Delivery
– volume: 109
  start-page: 1855
  year: 2012
  publication-title: Biotechnol. Bioeng.
– volume: 9
  start-page: 1620
  year: 2018
  publication-title: Nat. Commun.
– volume: 34
  start-page: 917
  year: 2018
  publication-title: Langmuir
– volume: 12
  start-page: 1831
  year: 2011
  publication-title: Biomacromolecules
– volume: 2
  start-page: 53
  year: 2016
  publication-title: Int J. Bioprinting
– volume: 5
  start-page: 1150
  year: 2019
  publication-title: ACS Biomater. Sci. Eng.
– volume: 25
  start-page: 7406
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 162
  year: 2015
  publication-title: Acta Biomater.
– volume: 1
  start-page: 763
  year: 2013
  publication-title: Biomater. Sci.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 11
  start-page: 454
  year: 2018
  publication-title: Materials
– volume: 7
  start-page: 843
  year: 2019
  publication-title: Biomater. Sci.
– volume: 13
  start-page: 2997
  year: 2012
  publication-title: Biomacromolecules
– year: 2020
  publication-title: Chem. Rev.
– volume: 67
  start-page: 264
  year: 2015
  publication-title: Biomaterials
– volume: 101A
  start-page: 1255
  year: 2013
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 95
  start-page: 32
  year: 2019
  publication-title: Prog. Polym. Sci.
– volume: 124
  start-page: 106
  year: 2017
  publication-title: Biomaterials
– volume: 30
  start-page: 6702
  year: 2009
  publication-title: Biomaterials
– volume: 32 132 31
  start-page: 773 296
  year: 2014 2018 2019
  publication-title: Nat. Biotechnol. Adv. Drug Delivery Rev. Adv. Mater.
– volume: 9 66 32 6
  start-page: 3283 299 1838 1285
  year: 2013 2017 2011 2013
  publication-title: Soft Matter Int. J. Polym. Mater. Polym. Biomater. Biomaterials Materials
– volume: 8
  start-page: 3115
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 1800
  year: 2016
  publication-title: ACS Biomater. Sci. Eng.
– volume: 7
  start-page: 4575
  year: 2017
  publication-title: Sci. Rep.
– volume: 34 117 1 15
  start-page: 422
  year: 2016 2017 2019 2019
  publication-title: Biotechnol. Adv. Chem. Rev. Mater. Today Bio Small
– volume: 3
  year: 2017
  publication-title: Biomed. Phys. Eng. Express
– volume: 2
  start-page: 1817
  year: 2016
  publication-title: ACS Biomater. Sci. Eng.
– volume: 10
  start-page: 8993
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 569
  year: 2019
  publication-title: Polymers
– volume: 2
  start-page: 1752
  year: 2016
  publication-title: ACS Biomater. Sci. Eng.
– volume: 9
  start-page: 1304
  year: 2014
  publication-title: Biotechnol. J.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 34
  start-page: 312
  year: 2016
  publication-title: Nat. Biotechnol.
– volume: 17
  start-page: 514
  year: 2012
  publication-title: Nephrology
– volume: 10
  year: 2018
  publication-title: Biofabrication
– volume: 22
  start-page: 173
  year: 2016
  publication-title: Tissue Eng., Part C
– volume: 33
  start-page: 1281
  year: 2012
  publication-title: Biomaterials
– volume: 116 1078 4
  start-page: 1496 15 185
  year: 2016 2018 2017
  publication-title: Chem. Rev. Adv. Exp. Med. Biol. Genes Dis.
– volume: 113 216
  start-page: 3179 57
  year: 2016 2019
  publication-title: Proc. Natl. Acad. Sci. USA Transl. Res.
– volume: 223
  start-page: 219
  year: 2018
  publication-title: Mater. Lett.
– volume: 45
  start-page: 132
  year: 2017
  publication-title: Ann. Biomed. Eng.
– volume: 7
  start-page: 1471
  year: 2006
  publication-title: Biomacromolecules
– volume: 14
  start-page: 413
  year: 2008
  publication-title: Tissue Eng., Part A
– volume: 13
  year: 2018
  publication-title: Biomed Mater
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 269
  year: 2013
  publication-title: Frontiers of Materials Science
– volume: 1 6
  start-page: 593
  year: 2019 2018
  publication-title: Acs Appl. Polym. Mater. J Mater Chem C
– volume: 18
  start-page: 62
  year: 2012
  publication-title: Tissue Eng., Part C
– volume: 71
  start-page: 678
  year: 2017
  publication-title: Mater. Sci. Eng., C
– volume: 31
  start-page: 7494
  year: 2010
  publication-title: Biomaterials
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 61
  start-page: 340
  year: 2018
  publication-title: J. Ind. Eng. Chem.
– volume: 173
  start-page: 188
  year: 2018
  publication-title: Exp. Eye Res.
– volume: 13
  start-page: 551
  year: 2013
  publication-title: Macromol. Biosci.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 18
  start-page: 1304
  year: 2012
  publication-title: Tissue Eng., Part A
– volume: 105
  start-page: 3231
  year: 2017
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 131
  start-page: 57
  year: 2015
  publication-title: Carbohydr. Polym.
– volume: 11
  start-page: 1796
  year: 2010
  publication-title: Biomacromolecules
– volume: 48
  start-page: 4049
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 135
  year: 2013
  publication-title: J. Biomech. Eng.
– volume: 6
  start-page: 2578
  year: 2018
  publication-title: Biomater. Sci.
– volume: 9
  year: 2020
  publication-title: Adv. Healthcare Mater.
– volume: 16
  start-page: 8675
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 19
  start-page: 1644
  year: 2019
  publication-title: Lab Chip
– volume: 109
  start-page: 2357
  year: 2012
  publication-title: Biotechnol. Bioeng.
– volume: 3
  start-page: 1499
  year: 2017
  publication-title: ACS Biomater. Sci. Eng.
– volume: 25
  start-page: 263
  year: 2019
  publication-title: Nat. Med.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Int.
– volume: 1
  start-page: 2
  year: 2018
  publication-title: Bio‐Des. Manuf.
– volume: 13 42
  start-page: 548
  year: 2018 2019
  publication-title: PLoS One
– volume: 10
  start-page: 555
  year: 2018
  publication-title: Polymers
– volume: 10
  start-page: 664
  year: 2018
  publication-title: Polymers
– volume: 24
  start-page: 74
  year: 2018
  publication-title: Tissue Eng., Part C
– volume: 171
  start-page: 57
  year: 2018
  publication-title: Biomaterials
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 217
  start-page: 26
  year: 2013
  publication-title: J. Neurosci. Methods
– volume: 10
  start-page: 6849
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: S
  start-page: 54
  year: 1966
  publication-title: Radiat Res
– volume: 6
  start-page: 95
  year: 2013
  publication-title: Biofabrication
– volume: 10
  start-page: 1675
  year: 2009
  publication-title: Biomacromolecules
– volume: 106
  start-page: 58
  year: 2016
  publication-title: Biomaterials
– volume: 13
  year: 2018
  publication-title: Biotechnol. J.
– volume: 7
  year: 2015
  publication-title: Biofabrication
– volume: 3
  start-page: 1109
  year: 2017
  publication-title: ACS Biomater. Sci. Eng.
– volume: 56
  start-page: 537
  year: 2007
  publication-title: Kem Ind
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 18
  start-page: 33
  year: 2012
  publication-title: Tissue Eng., Part C
– volume: 9
  start-page: 5181
  year: 2013
  publication-title: Acta Biomater.
– volume: 71
  start-page: 379
  year: 2018
  publication-title: Acta Biomater.
– volume: 162
  start-page: 34
  year: 2018
  publication-title: Biomaterials
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 106
  start-page: 865
  year: 2018
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 33
  start-page: 88
  year: 2016
  publication-title: Acta Biomater.
– volume: 7
  start-page: 5837
  year: 2017
  publication-title: Sci. Rep.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 19
  year: 2019
  publication-title: Macromol. Biosci.
– volume: 28
  start-page: 677
  year: 2016
  publication-title: Adv. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 548
  year: 2017
  publication-title: Tissue Eng., Part C
– volume: 84
  start-page: 180
  year: 2019
  publication-title: Acta Biomater.
– volume: 5
  start-page: 2688
  year: 2019
  publication-title: ACS Biomater. Sci. Eng.
– volume: 9
  start-page: 3705
  year: 2013
  publication-title: Soft Matter
– volume: 8
  start-page: 296
  year: 2018
  publication-title: Nanomaterials
– volume: 9
  year: 2014
  publication-title: PLoS One
– volume: 260 15
  start-page: 920 3
  year: 1993 2006
  publication-title: Science Cell Transplant.
– volume: 24
  start-page: 4514
  year: 2019
  publication-title: Molecules
– volume: 14
  start-page: 2202
  year: 2014
  publication-title: Lab Chip
– volume: 21
  start-page: 42
  year: 2019
  publication-title: Biomed. Microdevices
– volume: 110
  start-page: 45
  year: 2016
  publication-title: Biomaterials
– volume: 3
  start-page: 826
  year: 2017
  publication-title: ACS Biomater. Sci. Eng.
– volume: 6
  start-page: 562
  year: 2018
  publication-title: Biomater. Sci.
– volume: 39
  year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 20
  start-page: 1860
  year: 2019
  publication-title: Biomacromolecules
– volume: 8
  year: 2016
  publication-title: Biofabrication
– volume: 131
  year: 2018
  publication-title: J. Visualized Exp.
– volume: 24
  start-page: 4922
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 2624
  year: 2015
  publication-title: Biomacromolecules
– volume: 61
  start-page: 41
  year: 2017
  publication-title: Acta Biomater.
– volume: 19
  start-page: 3390
  year: 2018
  publication-title: Biomacromolecules
– volume: 11
  start-page: 2151
  year: 2014
  publication-title: Mol. Pharmaceutics
– volume: 364
  start-page: 458
  year: 2019
  publication-title: Science
– volume: 8
  start-page: 1730
  year: 2012
  publication-title: Acta Biomater.
– volume: 77
  start-page: 389
  year: 2018
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 71
  start-page: 48
  year: 2015
  publication-title: Biomaterials
– volume: 3
  start-page: 1519
  year: 2017
  publication-title: ACS Biomater. Sci. Eng.
– volume: 54
  start-page: 3957
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  year: 2017
  publication-title: Chem. Commun.
– volume: 5
  year: 2013
  publication-title: Biofabrication
– volume: 8
  year: 2018
  publication-title: Sci. Rep.
– volume: 14
  start-page: 2765
  year: 2013
  publication-title: Biomacromolecules
– volume: 2
  start-page: 1743
  year: 2016
  publication-title: ACS Biomater. Sci. Eng.
– volume: 5
  start-page: 2353
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 11
  start-page: 579
  year: 2018
  publication-title: Materials
– volume: 3
  start-page: 1106
  year: 2015
  publication-title: J. Mater. Chem. B
– volume: 27
  start-page: 1607
  year: 2015
  publication-title: Adv. Mater.
– volume: 19
  start-page: 672
  year: 2018
  publication-title: Biomacromolecules
– volume: 109
  year: 2018
  publication-title: Biopolymers
– volume: 13 131
  start-page: 826 98
  year: 2017 2017
  publication-title: Small Biomaterials
– volume: 90
  start-page: 634
  year: 2018
  publication-title: Mater. Sci. Eng., C
– volume: 12
  year: 2018
  publication-title: J. Tissue Eng. Regener. Med.
– volume: 42
  start-page: 5301
  year: 2004
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 131
  year: 2009
  publication-title: J. Biomech. Eng.
– volume: 11 17
  start-page: 1213
  year: 2019 2016
  publication-title: Nanoscale Biomacromolecules
– volume: 6 132
  year: 2017 2015
  publication-title: Adv. Healthcare Mater. J Appl Polym Sci
– volume: 8
  start-page: 4451
  year: 2017
  publication-title: Polym. Chem.
– volume: 8
  start-page: 8020
  year: 2018
  publication-title: Sci. Rep.
– volume: 5
  start-page: 326
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 3
  start-page: 130
  year: 2017
  publication-title: International Journal of Bioprinting
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 10
  start-page: 630
  year: 2014
  publication-title: Acta Biomater.
– volume: 105
  start-page: 3262
  year: 2017
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 4
  start-page: 4457
  year: 2014
  publication-title: Sci. Rep.
– volume: 8 11
  start-page: 1963 9738
  year: 2018 2017
  publication-title: Sci Rep‐Uk ACS Nano
– volume: 25
  start-page: 165
  year: 2009
  publication-title: Crit. Care Clin.
– volume: 9
  start-page: E39
  year: 2015
  publication-title: J. Tissue Eng. Regener. Med.
– volume: 198
  start-page: 261
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 105
  start-page: 2582
  year: 2017
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 101
  start-page: 169
  year: 2018
  publication-title: Eur. Polym. J.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 50
  start-page: 4913
  year: 2017
  publication-title: Macromolecules
– ident: e_1_2_8_60_1
  doi: 10.1038/s41598-018-26407-3
– ident: e_1_2_8_61_1
  doi: 10.1088/2057-1976/aa70f0
– ident: e_1_2_8_230_1
  doi: 10.1021/acsbiomaterials.7b00601
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.chemrev.5b00303
– ident: e_1_2_8_239_1
  doi: 10.1038/s41467-018-03759-y
– ident: e_1_2_8_126_1
  doi: 10.1021/acsapm.8b00165
– year: 2020
  ident: e_1_2_8_34_1
  publication-title: Chem. Rev.
– ident: e_1_2_8_75_1
  doi: 10.1016/j.actbio.2018.02.035
– ident: e_1_2_8_166_1
  doi: 10.1371/journal.pone.0195820
– ident: e_1_2_8_36_1
  doi: 10.1016/j.biomaterials.2016.09.003
– start-page: 54
  year: 1966
  ident: e_1_2_8_159_1
  publication-title: Radiat Res
– ident: e_1_2_8_10_1
  doi: 10.1039/C7PY00826K
– ident: e_1_2_8_24_1
  doi: 10.1016/j.matlet.2018.03.204
– ident: e_1_2_8_94_1
  doi: 10.1007/s10439-016-1653-z
– ident: e_1_2_8_255_1
  doi: 10.1002/jbm.a.36179
– ident: e_1_2_8_252_1
  doi: 10.1088/1758-5090/ab15a9
– ident: e_1_2_8_26_1
  doi: 10.1002/smll.201700684
– ident: e_1_2_8_126_2
  doi: 10.1039/C8TC03389G
– ident: e_1_2_8_156_1
  doi: 10.18063/IJB.2017.02.003
– ident: e_1_2_8_233_1
  doi: 10.1002/bit.24488
– ident: e_1_2_8_243_1
  doi: 10.1016/j.biomaterials.2015.08.028
– ident: e_1_2_8_209_1
  doi: 10.1016/j.eurpolymj.2018.02.023
– ident: e_1_2_8_215_1
  doi: 10.1088/1758-5090/aa53bd
– ident: e_1_2_8_235_1
  doi: 10.1021/bm200178w
– ident: e_1_2_8_49_1
  doi: 10.1088/1758-5090/aacd30
– ident: e_1_2_8_113_1
  doi: 10.1088/1361-6528/aaafa1
– ident: e_1_2_8_144_1
  doi: 10.1016/j.actbio.2012.09.039
– ident: e_1_2_8_135_1
  doi: 10.1038/s41598-017-09201-5
– ident: e_1_2_8_245_1
  doi: 10.1089/tea.2007.0173
– ident: e_1_2_8_236_1
  doi: 10.1002/biot.201400305
– ident: e_1_2_8_37_1
  doi: 10.1016/j.carbpol.2015.05.021
– ident: e_1_2_8_35_1
  doi: 10.1073/pnas.1521342113
– ident: e_1_2_8_222_1
  doi: 10.1016/j.biomaterials.2018.01.057
– ident: e_1_2_8_196_1
  doi: 10.1021/acsbiomaterials.6b00432
– ident: e_1_2_8_212_1
  doi: 10.1016/j.actbio.2017.08.005
– ident: e_1_2_8_123_1
  doi: 10.1016/j.actbio.2014.09.033
– ident: e_1_2_8_43_1
  doi: 10.1115/1.3128729
– ident: e_1_2_8_232_1
  doi: 10.1039/C6NR02299E
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1440-1797.2012.01615.x
– ident: e_1_2_8_33_2
  doi: 10.1021/acs.chemrev.7b00074
– ident: e_1_2_8_106_1
  doi: 10.1002/adhm.201901667
– ident: e_1_2_8_56_1
  doi: 10.1021/bm3011352
– ident: e_1_2_8_163_1
  doi: 10.1039/C4MT00057A
– ident: e_1_2_8_167_1
  doi: 10.1039/C7CS00718C
– ident: e_1_2_8_171_1
  doi: 10.1021/bm1002398
– volume: 13
  start-page: 826
  year: 2017
  ident: e_1_2_8_241_1
  publication-title: Small
– ident: e_1_2_8_147_1
  doi: 10.1039/C8BM00689J
– ident: e_1_2_8_190_1
  doi: 10.1038/srep24474
– ident: e_1_2_8_204_1
  doi: 10.1016/j.biomaterials.2018.04.034
– ident: e_1_2_8_109_1
  doi: 10.1016/j.jiec.2017.12.032
– ident: e_1_2_8_6_1
  doi: 10.1007/s10544-019-0372-2
– ident: e_1_2_8_201_1
  doi: 10.1016/j.msec.2018.04.092
– ident: e_1_2_8_25_1
  doi: 10.1021/acsami.8b01294
– ident: e_1_2_8_99_1
  doi: 10.1002/advs.201700550
– ident: e_1_2_8_218_1
  doi: 10.1016/j.biomaterials.2016.07.038
– ident: e_1_2_8_9_1
  doi: 10.1039/c3bm00012e
– ident: e_1_2_8_220_1
  doi: 10.1088/1758-5090/8/3/035002
– ident: e_1_2_8_32_1
  doi: 10.1002/adfm.201400274
– ident: e_1_2_8_76_1
  doi: 10.1002/marc.201400501
– ident: e_1_2_8_213_1
  doi: 10.1002/adma.201806899
– ident: e_1_2_8_2_1
  doi: 10.1016/j.ccc.2008.12.001
– ident: e_1_2_8_138_1
  doi: 10.1088/1758-5082/6/3/035004
– ident: e_1_2_8_155_1
  doi: 10.1016/j.biomaterials.2011.10.067
– ident: e_1_2_8_33_3
  doi: 10.1016/j.mtbio.2019.100008
– ident: e_1_2_8_116_1
  doi: 10.1002/adma.201305506
– ident: e_1_2_8_117_1
  doi: 10.1088/1758-5090/aa857c
– ident: e_1_2_8_143_1
  doi: 10.1016/j.actbio.2018.12.008
– ident: e_1_2_8_208_1
  doi: 10.1021/acsami.5b10471
– ident: e_1_2_8_181_1
  doi: 10.1115/1.4024575
– ident: e_1_2_8_120_1
  doi: 10.1002/bip.23080
– ident: e_1_2_8_251_1
  doi: 10.1002/jbm.a.36323
– ident: e_1_2_8_103_1
  doi: 10.1021/acs.macromol.7b01114
– ident: e_1_2_8_165_1
  doi: 10.1002/pola.20366
– ident: e_1_2_8_241_2
  doi: 10.1016/j.biomaterials.2017.03.026
– ident: e_1_2_8_101_1
  doi: 10.1002/adhm.201701249
– ident: e_1_2_8_118_1
  doi: 10.1089/ten.tec.2017.0346
– ident: e_1_2_8_96_1
  doi: 10.1371/journal.pone.0216776
– ident: e_1_2_8_216_1
  doi: 10.1021/acsami.7b16059
– ident: e_1_2_8_153_1
  doi: 10.3390/ma7043106
– ident: e_1_2_8_110_1
  doi: 10.1038/s41598-017-05699-x
– ident: e_1_2_8_145_1
  doi: 10.1021/acs.biomac.8b01589
– ident: e_1_2_8_100_1
  doi: 10.1038/srep27226
– ident: e_1_2_8_194_1
  doi: 10.1088/1758-5090/aa9b4e
– ident: e_1_2_8_258_1
  doi: 10.1002/advs.201600058
– ident: e_1_2_8_192_1
  doi: 10.1371/journal.pone.0189428
– ident: e_1_2_8_170_1
  doi: 10.1021/bm400610b
– ident: e_1_2_8_35_2
  doi: 10.1016/j.trsl.2019.08.010
– ident: e_1_2_8_133_1
  doi: 10.1016/j.jmbbm.2017.09.031
– ident: e_1_2_8_154_1
  doi: 10.1021/acsami.6b11669
– ident: e_1_2_8_253_1
  doi: 10.1038/nbt.3413
– ident: e_1_2_8_131_1
  doi: 10.1088/1758-5082/5/1/015003
– ident: e_1_2_8_234_1
  doi: 10.1089/ten.tea.2011.0543
– ident: e_1_2_8_81_1
  doi: 10.1073/pnas.1808645116
– ident: e_1_2_8_226_1
  doi: 10.1088/1758-5090/ab0692
– ident: e_1_2_8_20_1
  doi: 10.1002/adfm.201505329
– ident: e_1_2_8_141_1
  doi: 10.1016/j.progpolymsci.2019.05.001
– ident: e_1_2_8_197_1
  doi: 10.1002/term.1745
– ident: e_1_2_8_8_1
  doi: 10.1039/C7BM00765E
– ident: e_1_2_8_150_1
  doi: 10.1021/bm900036s
– ident: e_1_2_8_88_1
  doi: 10.1002/adma.201604983
– ident: e_1_2_8_254_1
  doi: 10.1088/1758-5090/8/4/045005
– ident: e_1_2_8_127_1
  doi: 10.1088/1758-5090/aa8cb7
– ident: e_1_2_8_140_1
  doi: 10.1039/C6TB01501H
– ident: e_1_2_8_121_1
  doi: 10.1021/acsbiomaterials.6b00149
– ident: e_1_2_8_80_1
  doi: 10.1038/s41598-017-16668-9
– ident: e_1_2_8_82_1
  doi: 10.1002/anie.201411383
– ident: e_1_2_8_98_1
  doi: 10.1021/mp400573g
– ident: e_1_2_8_227_1
  doi: 10.1002/adhm.201600182
– ident: e_1_2_8_53_1
  doi: 10.1088/1758-5090/aa8dd8
– ident: e_1_2_8_90_1
  doi: 10.1088/1758-5090/8/1/014101
– ident: e_1_2_8_207_1
  doi: 10.1002/adhm.201600636
– ident: e_1_2_8_54_1
  doi: 10.1002/adfm.201700798
– ident: e_1_2_8_221_1
  doi: 10.1016/j.actbio.2018.03.021
– ident: e_1_2_8_228_1
  doi: 10.1088/1758-5090/7/4/044105
– ident: e_1_2_8_91_1
  doi: 10.1002/adhm.201600505
– ident: e_1_2_8_160_1
  doi: 10.1002/adhm.201601122
– ident: e_1_2_8_185_1
  doi: 10.1016/j.actbio.2015.12.039
– ident: e_1_2_8_188_1
  doi: 10.1371/journal.pone.0112497
– ident: e_1_2_8_257_1
  doi: 10.1016/j.actbio.2016.01.013
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.201703404
– ident: e_1_2_8_71_1
  doi: 10.18063/IJB.2016.01.009
– ident: e_1_2_8_107_1
  doi: 10.1002/mabi.201900098
– ident: e_1_2_8_97_1
  doi: 10.1016/j.biomaterials.2017.01.042
– ident: e_1_2_8_198_1
  doi: 10.1016/j.exer.2018.05.010
– ident: e_1_2_8_191_1
  doi: 10.1088/1758-5090/aad36d
– ident: e_1_2_8_256_1
  doi: 10.1038/s41598-018-28715-0
– ident: e_1_2_8_112_1
  doi: 10.1002/adma.201503310
– ident: e_1_2_8_104_1
  doi: 10.3390/polym11030569
– ident: e_1_2_8_14_3
  doi: 10.1016/j.gendis.2017.10.002
– ident: e_1_2_8_175_1
  doi: 10.1089/ten.tec.2011.0060
– ident: e_1_2_8_122_1
  doi: 10.1021/acsami.9b03442
– ident: e_1_2_8_39_1
  doi: 10.1002/adfm.201503423
– ident: e_1_2_8_50_1
  doi: 10.1039/c3sm27560d
– ident: e_1_2_8_108_1
  doi: 10.1038/srep04457
– ident: e_1_2_8_250_1
  doi: 10.1088/1758-5090/aac902
– ident: e_1_2_8_40_1
  doi: 10.1080/09205063.2018.1433420
– ident: e_1_2_8_1_2
  doi: 10.3727/000000006783982340
– ident: e_1_2_8_205_1
  doi: 10.1002/adfm.201703716
– ident: e_1_2_8_47_1
  doi: 10.1089/ten.tec.2017.0222
– ident: e_1_2_8_13_1
  doi: 10.1021/acsbiomaterials.8b00691
– ident: e_1_2_8_249_1
  doi: 10.1002/jbm.a.36117
– ident: e_1_2_8_58_1
  doi: 10.1002/jbm.a.34420
– ident: e_1_2_8_63_1
  doi: 10.1002/jbm.a.36184
– ident: e_1_2_8_246_1
  doi: 10.1002/adhm.201601451
– ident: e_1_2_8_169_1
  doi: 10.1016/j.actbio.2013.10.016
– ident: e_1_2_8_102_1
  doi: 10.1016/j.actbio.2012.01.029
– ident: e_1_2_8_95_1
  doi: 10.1088/1758-5082/6/2/024105
– ident: e_1_2_8_89_1
  doi: 10.1002/adfm.201605352
– ident: e_1_2_8_55_1
  doi: 10.1016/j.tibtech.2019.12.020
– ident: e_1_2_8_68_1
  doi: 10.1039/C4TB01727G
– ident: e_1_2_8_65_1
  doi: 10.3390/molecules24244514
– start-page: 12
  year: 2019
  ident: e_1_2_8_84_1
  publication-title: Materials
– ident: e_1_2_8_124_1
  doi: 10.1002/adhm.201800992
– ident: e_1_2_8_52_1
  doi: 10.1002/term.2058
– ident: e_1_2_8_129_1
  doi: 10.1021/acs.biomac.5b00363
– volume: 6
  start-page: 1701026
  year: 2017
  ident: e_1_2_8_23_1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201701021
– ident: e_1_2_8_186_1
  doi: 10.1088/1758-5090/8/3/035020
– ident: e_1_2_8_223_1
  doi: 10.1088/1758-5090/8/3/035003
– ident: e_1_2_8_148_1
  doi: 10.1002/adma.201405076
– ident: e_1_2_8_182_1
  doi: 10.1002/adhm.201801501
– ident: e_1_2_8_5_1
  doi: 10.1002/biot.201800148
– ident: e_1_2_8_210_1
  doi: 10.6023/A14100721
– ident: e_1_2_8_151_1
  doi: 10.1016/S0142-9612(02)00274-0
– ident: e_1_2_8_92_1
  doi: 10.1002/adhm.201700015
– ident: e_1_2_8_105_1
  doi: 10.1021/acs.biomac.7b01827
– ident: e_1_2_8_168_1
  doi: 10.1126/sciadv.1500758
– ident: e_1_2_8_45_1
  doi: 10.1088/1758-5090/7/4/045011
– ident: e_1_2_8_50_4
  doi: 10.3390/ma6041285
– ident: e_1_2_8_50_3
  doi: 10.1016/j.biomaterials.2010.11.008
– ident: e_1_2_8_247_1
  doi: 10.1002/mabi.201200471
– ident: e_1_2_8_160_2
  doi: 10.1002/app.42458
– ident: e_1_2_8_44_1
  doi: 10.1038/s41598-017-17286-1
– ident: e_1_2_8_7_1
  doi: 10.1089/ten.teb.2016.0200
– ident: e_1_2_8_142_1
  doi: 10.1002/adfm.201401502
– ident: e_1_2_8_83_1
  doi: 10.1021/acsbiomaterials.6b00158
– ident: e_1_2_8_215_2
  doi: 10.1088/1758-5090/aacb42
– ident: e_1_2_8_16_1
  doi: 10.1021/acsbiomaterials.9b00047
– ident: e_1_2_8_27_1
  doi: 10.1021/acsbiomaterials.7b00224
– ident: e_1_2_8_176_1
  doi: 10.1002/bit.24455
– ident: e_1_2_8_1_1
  doi: 10.1126/science.8493529
– ident: e_1_2_8_195_1
  doi: 10.1002/term.2602
– ident: e_1_2_8_137_2
  doi: 10.1021/acsnano.7b01008
– ident: e_1_2_8_29_1
  doi: 10.1002/adhm.201701026
– ident: e_1_2_8_134_1
  doi: 10.3390/ma11040579
– ident: e_1_2_8_178_1
  doi: 10.1016/j.msec.2016.10.069
– ident: e_1_2_8_172_1
  doi: 10.1039/C4LC00030G
– ident: e_1_2_8_4_3
  doi: 10.1002/adma.201804041
– ident: e_1_2_8_206_1
  doi: 10.1088/1758-5090/aa7e96
– ident: e_1_2_8_161_1
  doi: 10.1088/1758-5090/aa7279
– ident: e_1_2_8_19_1
  doi: 10.1039/C7CC08225H
– ident: e_1_2_8_259_1
  doi: 10.1002/marc.201700534
– ident: e_1_2_8_136_1
  doi: 10.1088/1758-5090/8/3/035004
– ident: e_1_2_8_77_1
  doi: 10.1002/marc.201600695
– ident: e_1_2_8_111_1
  doi: 10.1016/j.biomaterials.2009.08.055
– ident: e_1_2_8_231_1
  doi: 10.1021/acsami.7b18197
– ident: e_1_2_8_17_1
  doi: 10.1039/C7BM01015J
– ident: e_1_2_8_244_1
  doi: 10.1021/acsbiomaterials.6b00288
– ident: e_1_2_8_31_1
  doi: 10.1021/bm060010d
– ident: e_1_2_8_132_1
  doi: 10.1002/adhm.201700255
– ident: e_1_2_8_187_1
  doi: 10.1088/1758-5090/8/2/025016
– ident: e_1_2_8_146_1
  doi: 10.1002/adfm.201700318
– ident: e_1_2_8_158_1
  doi: 10.1039/C8BM01246F
– ident: e_1_2_8_79_1
  doi: 10.1039/C3CP55092C
– ident: e_1_2_8_4_1
  doi: 10.1038/nbt.2958
– ident: e_1_2_8_50_2
  doi: 10.1080/00914037.2016.1201830
– ident: e_1_2_8_87_1
  doi: 10.1002/adma.201904209
– ident: e_1_2_8_93_1
  doi: 10.1002/adhm.201801048
– ident: e_1_2_8_46_1
  doi: 10.1088/1758-5082/5/4/045010
– ident: e_1_2_8_237_1
  doi: 10.1088/1758-5090/7/3/035006
– ident: e_1_2_8_166_2
  doi: 10.1177/0391398819856024
– ident: e_1_2_8_202_1
  doi: 10.1016/j.carbpol.2018.06.081
– ident: e_1_2_8_229_1
  doi: 10.1088/1758-5090/7/4/045009
– ident: e_1_2_8_119_1
  doi: 10.1021/acsami.6b10673
– ident: e_1_2_8_70_2
  doi: 10.1021/acs.biomac.6b00039
– ident: e_1_2_8_199_1
  doi: 10.1002/adhm.201800050
– ident: e_1_2_8_15_1
  doi: 10.1088/1758-5090/aac00c
– ident: e_1_2_8_73_1
  doi: 10.1016/j.jneumeth.2013.04.009
– ident: e_1_2_8_149_1
  doi: 10.1007/s11706-013-0211-y
– ident: e_1_2_8_14_2
  doi: 10.1007/978-981-13-0950-2_2
– ident: e_1_2_8_38_1
  doi: 10.1016/j.carbpol.2018.07.001
– ident: e_1_2_8_180_1
  doi: 10.1088/1758-5082/3/3/034113
– ident: e_1_2_8_4_2
  doi: 10.1016/j.addr.2018.07.004
– ident: e_1_2_8_114_1
  doi: 10.3390/nano8050296
– ident: e_1_2_8_157_1
  doi: 10.1088/1748-605X/aaa5b6
– ident: e_1_2_8_177_1
  doi: 10.1089/ten.tec.2011.0382
– ident: e_1_2_8_203_1
  doi: 10.1021/acsami.7b19808
– ident: e_1_2_8_62_1
  doi: 10.1021/acs.biomac.5b00188
– ident: e_1_2_8_137_1
  doi: 10.1038/s41598-018-20385-2
– ident: e_1_2_8_30_1
  doi: 10.1021/acsami.7b19730
– ident: e_1_2_8_69_1
  doi: 10.1039/c3sm27389j
– ident: e_1_2_8_200_1
  doi: 10.1002/adhm.201801631
– ident: e_1_2_8_217_1
  doi: 10.1002/adma.201800242
– ident: e_1_2_8_78_1
  doi: 10.1007/s00397-015-0837-z
– ident: e_1_2_8_130_1
  doi: 10.1088/1758-5090/8/4/045002
– ident: e_1_2_8_164_1
  doi: 10.1039/C9LC00117D
– ident: e_1_2_8_240_1
  doi: 10.1021/acsbiomaterials.7b00101
– ident: e_1_2_8_59_1
  doi: 10.1088/1758-5090/7/4/044102
– ident: e_1_2_8_72_1
  doi: 10.3390/polym10060664
– ident: e_1_2_8_11_1
  doi: 10.1039/C5LC90069G
– ident: e_1_2_8_238_1
  doi: 10.1002/adma.201703443
– ident: e_1_2_8_21_1
  doi: 10.1021/acsbiomaterials.6b00203
– ident: e_1_2_8_57_1
  doi: 10.1007/s00170-019-03438-2
– ident: e_1_2_8_125_1
  doi: 10.1371/journal.pone.0177628
– ident: e_1_2_8_12_1
  doi: 10.1007/s42242-018-0004-3
– ident: e_1_2_8_174_1
  doi: 10.1002/adhm.201500677
– ident: e_1_2_8_42_1
  doi: 10.1088/1758-5090/aa7b1d
– volume: 56
  start-page: 537
  year: 2007
  ident: e_1_2_8_152_1
  publication-title: Kem Ind
– ident: e_1_2_8_179_1
  doi: 10.1039/c3tb21093f
– ident: e_1_2_8_189_1
  doi: 10.1002/adhm.201801512
– ident: e_1_2_8_173_1
  doi: 10.1371/journal.pone.0163902
– ident: e_1_2_8_33_1
  doi: 10.1016/j.biotechadv.2015.12.011
– ident: e_1_2_8_67_1
  doi: 10.1016/j.biomaterials.2015.07.022
– ident: e_1_2_8_18_1
  doi: 10.1016/j.actbio.2017.10.047
– ident: e_1_2_8_183_1
  doi: 10.1038/s41598-017-04691-9
– ident: e_1_2_8_41_1
  doi: 10.1088/1758-5090/7/4/045012
– ident: e_1_2_8_224_1
  doi: 10.1088/1758-5090/ab15cb
– ident: e_1_2_8_184_1
  doi: 10.1038/srep29977
– ident: e_1_2_8_139_1
  doi: 10.1021/acsami.7b13602
– volume: 9
  start-page: 17457
  year: 2017
  ident: e_1_2_8_242_1
  publication-title: ACS Appl. Mater. Int.
– ident: e_1_2_8_219_1
  doi: 10.1038/s41591-018-0296-z
– ident: e_1_2_8_248_1
  doi: 10.1088/1758-5082/6/3/035001
– ident: e_1_2_8_211_1
  doi: 10.1021/acsbiomaterials.6b00031
– ident: e_1_2_8_85_1
  doi: 10.1126/science.aav9750
– ident: e_1_2_8_66_1
  doi: 10.1016/j.biomaterials.2010.06.035
– ident: e_1_2_8_162_1
  doi: 10.1080/17425247.2017.1360865
– ident: e_1_2_8_70_1
  doi: 10.1039/C9NR01687B
– ident: e_1_2_8_33_4
  doi: 10.1002/smll.201805530
– ident: e_1_2_8_51_1
  doi: 10.3390/ma11030454
– ident: e_1_2_8_74_1
  doi: 10.1021/acs.langmuir.7b02540
– ident: e_1_2_8_128_1
  doi: 10.1021/acs.biomac.8b00696
– ident: e_1_2_8_225_1
  doi: 10.1002/adhm.201801181
– volume: 131
  start-page: 56372
  year: 2018
  ident: e_1_2_8_193_1
  publication-title: J. Visualized Exp.
– ident: e_1_2_8_115_1
  doi: 10.3390/polym10050555
– ident: e_1_2_8_64_1
  doi: 10.1089/ten.tec.2015.0307
– ident: e_1_2_8_86_1
  doi: 10.1016/B978-1-4557-2852-7.00006-8
– ident: e_1_2_8_214_1
  doi: 10.1021/acsbiomaterials.6b00226
– ident: e_1_2_8_28_1
  doi: 10.1007/s00397-015-0906-3
– ident: e_1_2_8_48_1
  doi: 10.1002/term.1682
SSID ssj0031247
Score 2.6909945
SecondaryResourceType review_article
Snippet Three‐dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as...
Three-dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2002931
SubjectTerms 3-D printers
3D bioprinting
Bioengineering
bioinks
Biomechanics
Biomimetics
Bioprinting
Crosslinking
crosslinking strategies
Design modifications
Hydrogels
hydrogel–cell interactions
Nanotechnology
Printing, Three-Dimensional
Three dimensional printing
Tissue Engineering
Title Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202002931
https://www.ncbi.nlm.nih.gov/pubmed/32734720
https://www.proquest.com/docview/2439595031
https://www.proquest.com/docview/2429773454
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfqlOiSD41K0kabs-zukY4kTUwd5KkqYizlZ2eZi_3nN6c1NE0LeGJG1up99HcvIdQs5MEHlcG7yiHMS2MLFjKwBqG7AlCiIZKJE5j_dvvd5AXA_d4cIt_lwfotpwQ8vI_tdo4FJNmp-ioZPXER4doJNBkF2kRoctZEX3lX4UB_DKoqsAZtkovFWqNjqsuVx9GZW-Uc1l5ppBT3eDyLLRucfJS2M2VQ39_kXP8T-92iTrBS-l7XwhbZEVk2yTtQW1wh3S7mDbi2ALtJS1NRMKvJfyS3rxnOIuIfpR0zSmd-lonh0H0d48GqdPAMK7ZNC9euz07CICg61dGDRb-NpRvhcHwgARiYVg0jWQkrGQEZAXrR3PYIjPFhCbloq4zzwjY80ixTVvCb5HakmamANCA08JDYBpWjICiuZJEUsGwOjiq6XxLGKXMxDqQp4co2SMwlxYmYU4NGE1NBY5r8q_5cIcP5aslxMaFgY6CRkQMTdwHcw-rbLBtPC8RCYmnWEZBuyYC1dYZD9fCNWnOMoC-cyxCMum85c2hA_9m5sqdfiXSkdkFZ9z_7Y6qU3HM3MMhGiqTrJF_wHcggBp
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD7quge2hzHY2LoVMBLTnkKD7aTNAw-lpSrQomkDibfgOM40rTSoF6Hyr_ZX-EWckxsUNCEh8cCjY8dxfPs-28ffAdg0XugKbeiKshdZ0kS2FSBQW4gtoRcqL5CJ8Xj_yO2eyINT57QE__K7MKk-RLHhRiMjma9pgNOGdO1WNXR8PqCzA7Iy8MR2Zld5aGaXuGob7-y3sYm_cd7ZO251rcyxgKUdZDiWrGs7qLuRJw3iayQlV47BkIqkChGTtbZdQ54rG4jXjSAUde4aFWkeBkKLhhSY7yt4TW7ESa6__bNQrBIIl4k_F0RJi6S-cp1Im9fmyzuPgw_I7TxXTsCuswjXeTWlNi5_t6aTYEtf3VOQfFH1-B7eZdSbNdOxsgQlM1yGt3cEGT9As0WVlfmTYLlyrxkzpPZMtNnun5g2QslUnMUR-xEPZsmJF-vOwlH8G3nGRzh5ln9YgfIwHprPwDw3kBo5gWmoEFmoq2SkOGK_Q1kr41bAypvc15kCOzkCGfipdjT3qSn8oikq8L1If5Fqj_w3ZTXvQX42B419jlzT8RybojeKaJw96EhIDU08pTQcFwBCOrICn9KeV3xKkPJRndsV4En_eaQM_q9-r1eEvjzlpXVY6B73e35v_-jwK7yh56k5XxXKk9HUrCL_mwRryYhjcPbcXfMGWIZdtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxQxFD5BTIw-qHiBVZCaaHwaGNpOd_vgA7BsFlkIUUl4Gzu9GOOyQ9jdmPVX-Vf8R54zN1yNISHhwceZdjqdnrbfN-3pdwBeee2UsJ6OKOsQSR_iKEOgjhBbnHZGZ7JwHj88Uv0T-e40OV2AH_VZmFIfollwo5FRzNc0wM9d2LwUDR2fDWnrgJwMtNiq3CoP_Owb_rSN3-530cKvOe_tfdztR1VcgcgmSHAi2bZx1lZBS4_wGqTkJvF4ZYI0DiHZ2lh5ClzZQbjuZE60ufImWO4yYUVHCiz3FtyWKtYULKL7vhGsEoiWRTgXBMmIlL5qmciYb87Xdx4G_-K281S5wLreA_hZt1Lp4vJ1YzrJNuz3PwQk_6dmfAj3K-LNtsuRsgQLfvQI7v0mx_gYtneprapoEqzW7fVjhsSeiS7b-ZLTMig5irM8sON8OCv2u1h_5i7yz8gynsDJjXzDU1gc5SO_AkyrTFpkBL5jHHJQZWQwHJE_oaKNVy2IaounttJfpzAgw7RUjuYpmSJtTNGCN03-81J55J85V-sOlFYz0DjlyDQTncSU_LJJxrmDNoTMyOdTysOR_guZyBYslx2veZUg3aM2j1vAi-5zRR3SD4eDQXP17DoPrcOd424vHewfHTyHu3S79OVbhcXJxdSvIfmbZC-K8cbg0033zF-6T1xk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crosslinking+Strategies+for+3D+Bioprinting+of+Polymeric+Hydrogels&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=GhavamiNejad%2C+Amin&rft.au=Ashammakhi%2C+Nureddin&rft.au=Wu%2C+Xiao+Yu&rft.au=Khademhosseini%2C+Ali&rft.date=2020-09-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=16&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202002931&rft.externalDBID=10.1002%252Fsmll.202002931&rft.externalDocID=SMLL202002931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon