Signaling cross-talk in plant disease resistance
Hormone signaling crosstalk plays a major role in plant defense against a wide range of both biotic and abiotic stresses. While many reviews on plant-microbe interactions have well described the general trends of signaling pathways in shaping host responses to pathogens, few discussions have conside...
Saved in:
Published in | Plant science (Limerick) Vol. 207; pp. 79 - 87 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier Ireland Ltd
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hormone signaling crosstalk plays a major role in plant defense against a wide range of both biotic and abiotic stresses. While many reviews on plant-microbe interactions have well described the general trends of signaling pathways in shaping host responses to pathogens, few discussions have considered a synthesis of positive versus negative interactions among such pathways, or variations in the signaling molecules themselves. This review deals with the interaction trends between salicylic, jasmonic, and abscisic acids in the signaling pathways, as well as exceptions to such trends. Here we focused on antagonistic versus cooperative interactions between salicylic and jasmonic acids, two major disease resistance signaling molecules, and some interactions with abscisic acid, a known abiotic stress hormone, and another player in plant defense mechanisms. We provide a set of examples materializing either antagonism or cooperation for each interaction between two pathways, thereby showing the trends and pinpointing the exceptions. Such analyses are practical for researchers working on the subject and essential for a better exploitation of the data already available in plant disease resistance signaling, both in Arabidopsis and crop species, toward the development of better disease management strategies for economically important crops. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.plantsci.2013.03.004 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0168-9452 1873-2259 1873-2259 |
DOI: | 10.1016/j.plantsci.2013.03.004 |