The CD68 protein as a potential target for leukaemia-reactive CTL

CD68, a haematopoietic differentiation marker of the monocyte-macrophage lineage, is expressed in various human malignancies including chronic and acute myeloid leukaemia (AML). While the majority of normal CD34(+) cells are negative for CD68 expression, CD34(+) cells from AML patients produce eleva...

Full description

Saved in:
Bibliographic Details
Published inLeukemia Vol. 16; no. 10; pp. 2019 - 2026
Main Authors Sadovnikova, E, Parovichnikova, E N, Savchenko, V G, Zabotina, T, Stauss, H J
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 01.10.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:CD68, a haematopoietic differentiation marker of the monocyte-macrophage lineage, is expressed in various human malignancies including chronic and acute myeloid leukaemia (AML). While the majority of normal CD34(+) cells are negative for CD68 expression, CD34(+) cells from AML patients produce elevated amounts of this protein. The purpose of this study was to identify CTL epitopes in the human CD68 protein. Mouse CD68 was also analysed to search for epitopes that could be used in murine tumor model. Peptides binding to murine H2(b) class I molecules were identified and used to stimulate CTL responses from allogeneic donor mice to avoid immunological tolerance. High avidity CTL clones specific for three different peptide epitopes did not kill CD68-expressing murine target cells, indicating that endogenous antigen processing failed to produce sufficient amounts of these peptides. In contrast, allo-restricted human CTL specific for an HLA-A2-binding peptide of CD68 recognised not only picomolar concentrations of peptide, but also displayed low levels of killing against HLA-A2-positive K562 and THP-1 leukemia cell lines and blast cells from AML patients. These data suggest that human leukaemia cells express limited amounts of CD68-derived peptides, and that high avidity CTL capable of recognising sub-picomolar concentrations of peptides are required for efficient killing of leukaemia cells.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0887-6924
1476-5551
DOI:10.1038/sj.leu.2402635