DcMYB113, a root‐specific R2R3‐MYB, conditions anthocyanin biosynthesis and modification in carrot

Summary Purple carrots, the original domesticated carrots, accumulate highly glycosylated and acylated anthocyanins in root and/or petiole. Previously, a quantitative trait locus (QTL) for root‐specific anthocyanin pigmentation was genetically mapped to chromosome 3 of carrot. In this study, an R2R3...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 18; no. 7; pp. 1585 - 1597
Main Authors Xu, Zhi‐Sheng, Yang, Qing‐Qing, Feng, Kai, Yu, Xiao, Xiong, Ai‐Sheng
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.07.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Summary Purple carrots, the original domesticated carrots, accumulate highly glycosylated and acylated anthocyanins in root and/or petiole. Previously, a quantitative trait locus (QTL) for root‐specific anthocyanin pigmentation was genetically mapped to chromosome 3 of carrot. In this study, an R2R3‐MYB gene, namely DcMYB113, was identified within this QTL region. DcMYB113 expressed in the root of ‘Purple haze’, a carrot cultivar with purple root and nonpurple petiole, but not in the roots of two carrot cultivars with a purple root and petiole (Deep purple and Cosmic purple) and orange carrot ‘Kurodagosun’, which appeared to be caused by variation in the promoter region. The function of DcMYB113 from ‘Purple haze’ was verified by transformation in ‘Cosmic purple’ and ‘Kurodagosun’, resulting in anthocyanin biosynthesis. Transgenic ‘Kurodagosun’ carrying DcMYB113 driven by the CaMV 35S promoter had a purple root and petiole, while transgenic ‘Kurodagosun’ expressing DcMYB113 driven by its own promoter had a purple root and nonpurple petiole, suggesting that root‐specific expression of DcMYB113 was determined by its promoter. DcMYB113 could activate the expression of DcbHLH3 and structural genes related to anthocyanin biosynthesis. DcUCGXT1 and DcSAT1, which were confirmed to be responsible for anthocyanins glycosylation and acylation, respectively, were also activated by DcMYB113. The WGCNA identified several genes co‐expressed with anthocyanin biosynthesis and the results indicated that DcMYB113 may regulate anthocyanin transport. Our findings provide insight into the molecular mechanism underlying root‐specific anthocyanin biosynthesis and further modification in carrot and even other root crops.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1467-7644
1467-7652
1467-7652
DOI:10.1111/pbi.13325